

SAP Esri Spatial Hackathon

Palm Springs, California, March 3rd - 5th, 2018

Disclaimer

This presentation outlines our general product direction and should not be relied on in making a purchase decision. This presentation is not subject to your license agreement or any other agreement with SAP. SAP has no obligation to pursue any course of business outlined in this presentation or to develop or release any functionality mentioned in this presentation. This presentation and SAP's strategy and possible future developments are subject to change and may be changed by SAP at any time for any reason without notice. This document is provided without a warranty of any kind, either express or implied, including but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement. SAP assumes no responsibility for errors or omissions in this document, except if such damages were caused by SAP intentionally or grossly negligent.

Agenda

- SAP HANA
- HANA Spatial
- Esri Integration

SAP HANA

A common Database Approach for OLTP and OLAP Using an In-Memory Column Database

SAP HANA

Basic Technology - In-Memory Computing

Keep Data in memory to speed up data access

Enterprise server with terabytes of main memory (scale-up)

Minimize data movement by

- column store
- compression
- performing calculations at database level

Divide and Conquer

- Use multi-core architecture of processors, multi-processor servers
- scale-out into a distributed landscape

1	123	12	2	200	32	3	333	18
1	2	3	123	200	333	12	32	18

ld	Date	Name
1	123	12
2	200	32
3	333	18

е	Name	#	Name	
	12	12	John	
	32	32	Flore	
	18	18	Lee	

SAP HANA Architecture

SAP HANA® Platform

On premise | Cloud

Application development

SAP Fiori® user experience(UX)

Graphic modeler

Application lifecycle management

Advanced analytical processing

Text

analytics

data

Search

Data integration and quality

Data virtualization

Apache Hadoop and Apache Spark integration

Extract, load, transform

Remote data sync

Database management

Columnar store – Transaction and analytical processing

Multicore and parallelization

Advanced compression

modeling

Openness

Data

quality

Administration and security

6

ONE Open Platform

OLTP + OLAP

ONE Copy of the Data

Geospatial Technologies

- Rapid development of geospatial technologies in recent years
- Enables new ways of collection and analysis of geo- and business data
 - Remote Sensing (RS)
 - Unmanned Aerial Vehicle (UAV)
 - Sensors
 - Global Positioning System (GPS)
 - Geo Enrichment
 - Geographic Information System (GIS)
 - Information technologies (database)

SAP HANA Spatial

Reveal a new dimension of your business data

HANA Spatial Engine

- OGC compliant
- Geodatabase for GIS
- Advanced geo-analytics
- Performance & Compression

HANA Spatial & Graph Services

- Earth Observation, UAV and GPS Service
- Based on open and commercial geo-referenced data
- Open & Extendable Ecosystem
- Exploring the world of spatial and connected data
- Spatial micro-services architecture

Vector Data

Raster Data

Drone Data

Spatial Predicates

SQL/MM

g1.**ST_Within**(g2) g1 \cap g2 = g1 \wedge I(g1) \cap E(g2) = \emptyset

g1.**ST_Intersects**(g2) g1 \cap g2 \neq Ø

g1.**ST_Equals**(g2) g1 = g2

g1.**ST_Contains**(g2) g1 \cap g2 = g2 \wedge I(g1) \cap I(g2) \neq \emptyset

g1.**ST_Touches**(g2) $(g1 \cap g2 \neq \emptyset) \land (B(g1) \cap B(g2) = \emptyset)$

g1.**ST_Overlaps**(g2) $(I(g1) \cap I(g2) \neq \emptyset) \land$ $(I(g1) \cap E(g2) \neq \emptyset) \land$ $(E(g1) \cap I(g2) \neq \emptyset)$

* No OGC standard

Consuming Spatial

SQL

1. table creation


```
SELECT
  description
FROM
  location
WHERE
```

location.ST Within(new ST POLYGON('POLYGON((0 0,1 0,1 1,0 0))')) = 1;

CREATE COLUMN TABLE locations id INTEGER, description CHAR (100), location ST POINT(0)

Consuming Spatial

Calculation Engine

```
1. Spatial tables
CREATE COLUMN TABLE locations
  id INTEGER,
  description CHAR (100),
                                                                (i)Output
  location ST POINT (4326),
  shape ST Geometry (4326)
                                                               ETE ST_JOIN
                            2. Calculation view
                         3. Standard SQL
                                                                     ₹ Aggre...
                                                          Project...
 SELECT
   description
                                                          DISTRI...
                                                                      III LOCATI...
 FROM
   calculation view
```

Clustering

Native Clustering Algorithms

- Good for first impression
- Easy to use
- Extreme fast grid clustering

- Best for non-spherical clusters
- Density based
- Higher complexity, better insights
- Best for spherical clusters
- Centroid based
 - Higher complexity, better insights

Clustering

SQL Example – Use Cases

Clustering with metadata accessor

(similar to group by aggregates)

SELECT

ST_ClusterId()
ST_ClusterCentroid()
ST_ClusterEnvelope()
Count(*)
AS cluster_id,
AS centroid,
AS envelope,
AS envelope,
AS num_hholds,
AS avg_clus_income

FROM households

WHERE income > 120000

GROUP CLUSTER BY location USING DBSCAN EPS 4 MINPTS 1000

HAVING count(*) >= 300

Cluster_id	Centroid	Envelope	Num_hhold s	Avg_clus_in come
1	Point(5 4)	Polygon(())	311	304.123
2	Point(15 78)	Polygon(())	621	714.234

Identify for each point the corresponding clusters (similar to window functions)

```
SELECT
ST_ClusterId()
OVER (CLUSTER BY location USING KMEANS CLUSTERS 5 ) AS cluster_id,
vm_id,
location,
revenue
FROM vending_machines
WHERE revenue < 15000
```

Cluster_id	Vm_id	Location	Revenue
1	1	Point(1 1)	1.311
1	2	Point(1.4 1.2)	1.166
1	3	Point(1.2 1.3)	799
2	4	Point(5.3 5.0)	2.125
2	5	Point(5.7 6)	1.750
3	6	Point(20 20)	1.532

© 2017 SAP SE or an SAP affiliate company. All rights reserved. | PUBLIC

ORDER BY cluster_id, revenue

SAP HANA Spatial

Esri Applications

ArcGIS Online

SAP Cloud Platform

Geodatabas Support for HANA

ArcGIS 10.6 and ArcGIS Pro 2.1

Geodatabase Support for HANA

- Subtypes
- Domains
- Relationship classes
- Attachments
- Editor tracking
- Non-versioned archiving
- Offline editing with sync capabilities
- New service based transaction model long transactions
- Utility network

Requires SAP HANA 2.0 SPS 2

Load, integrate, process

ArcGIS Geodatabase

Machine Data

Connected Data

Happy Mapping!

SAP HANA Spatial Reference
Earth Observation Service

SAP HANA & Esri

Thank You!

hinnerk.gildhoff@sap.com @HinnerkGildhoff

