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Multi-Layer Perceptron
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Part I

Stille Post

Problems when networks get really deep.



VERY DEEP NETWORKS

input



backward flow of gradients

forward flow of input signal

RESIDUAL NETWORKS

++++ “episcia”

ResNet Architecture: [He, Zhang, Ren, Sun, CVPR’16]

Skip-connection



backward flow of gradients

forward flow of input signal

STOCHASTIC DEPTH

++++ “episcia”

[Huang et al., ECCV’16]

Random Layer Removal
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DENSE CONNECTIVITY

C C C C

: Channel-wise concatenation C

[CVPR 2017]



DENSE AND SLIM

C C C C



DENSE AND SLIM

k channels k channels k channels k channels

k : Growth Rate 

C C C C



FORWARD PROPAGATION
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RESULTS



DATA SETS

CIFAR-10
10 classes

50K training images

CIFAR-100
100 classes

50K training images

ImageNet
1000 classes

1.2M training images

Krizhevsky et al. 2009 Krizhevsky et al. 2009 Krizhevsky et al. 2009
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RESULTS ON IMAGENET
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Part II

Why do we need huge models?



"easy" dog "hard" dog

EASY & HARD SAMPLES

 Some of the images are easy, 
others are hard.



ACCURACY & SPEED

Accuracy 

ResNet-50
(75%)

AlexNet
(57%)

Inference Time

AlexNet
(0.25 ms)

ResNet-50
(3.8ms)

+18%

+1500%

57%

(on ImageNet)
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MULTI-SCALE DENSENETS
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92% reduction in MUL-ADD FLOPS!
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volcano

"easy" "hard"

EASY AND HARD EXAMPLES

(exit at first stage) (exit at last stage)



Try out Dense Connectivity!

Explicit long term connections
Best generalization performance

Save the planet with MSD-Nets!



Constant-Time Predictive Distributions for Gaussian Processes
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Abstract

One of the most compelling features of Gaussian
process (GP) regression is its ability to provide
well calibrated posterior distributions. Recent
advances in inducing point methods have drasti-
cally sped up marginal likelihood and posterior
mean computations, leaving posterior covariance
estimation and sampling as the remaining compu-
tational bottlenecks. In this paper we address this
shortcoming by using the Lanczos decomposition
algorithm to rapidly approximate the predictive
covariance matrix. Our approach, which we re-
fer to as LOVE (LanczOs Variance Estimates),
substantially reduces the time and space complex-
ity over any previous method. In practice, it can
compute predictive covariances up to 2,000 times
faster and draw samples 18,000 time faster than
existing methods, all without sacrificing accuracy.

1. Introduction

Gaussian processes (GPs) are fully probabilistic models
which can naturally estimate predictive uncertainty through
posterior variances. These uncertainties play a pivotal role
in many application domains. For example, uncertainty in-
formation is crucial when incorrect predictions could have
catastrophic consequences, such as in medicine (Schulam
& Saria, 2017) or large-scale robotics (Deisenroth et al.,
2015); Bayesian optimization approaches typically incorpo-
rate model uncertainty when choosing actions (Snoek et al.,
2012; Deisenroth & Rasmussen, 2011; Wang & Jegelka,
2017); and reliable uncertainty estimates are arguably use-
ful for establishing trust in predictive models, especially
when predictions would be otherwise difficult to interpret
(Doshi-Velez & Kim, 2017; Zhou et al., 2017).

Although predictive uncertainties are a primary advantage
of GP models, they have recently become their primary com-
putational bottleneck. Historically, this has not always been
the case. The use of GPs used to be limited to problems with

1Cornell University. Correspondence to: Geoff Pleiss <ge-
off@cs.cornell.edu>, Jacob R. Gardner <jrg365@cornell.edu>,
Andrew Gordon Wilson <andrew@cornell.edu>.
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Figure 1. Comparison of predictive variances on airline passenger
extrapolation. The variances predicted with LOVE are accurate
within 10�4, yet can be computed orders of magnitude faster.

small datasets, since learning and inference computations
naı̈vely scale cubically with the number of data points (n).
However, recent advances in inducing point methods have
managed to scale up GPs to much larger datasets (Snelson
& Ghahramani, 2006; Quiñonero-Candela & Rasmussen,
2005; Titsias, 2009). For example, Kernel Interpolation for
Scalable Structured GPs (KISS-GP) scales to millions of
data points (Wilson & Nickisch, 2015; Wilson et al., 2015).
For a given test point x⇤, KISS-GP expresses the GP’s pre-
dictive mean as a>w(x⇤), where a is a pre-computed vector
dependent only on training data, and w(x⇤) is a sparse in-
terpolation vector. This particular formulation affords the
ability to compute predictive means in constant time, inde-
pendent of n.

However, these computational savings do not extend natu-
rally to predictive uncertainties. With KISS-GP, computing
the predictive covariance between two test points requires
O(n+m logm) computations, where m is the number of
inducing points used (see Table 1). While this asymptotic
complexity is lower than that of standard Gaussian process
inference, it quickly becomes prohibitive when n is large, or
when we wish to make many repeated computations. Addi-
tionally, drawing samples from the predictive distributions
– a necessary operation in many applications – is similarly
expensive. Matching the reduced complexity of predictive
mean inference has remained an open problem.

In this paper, we provide a solution based on the tridi-
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