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A 3 Minutes Introduction to

“Deep Learning”




Perceptron

T -

[Rosenblatt | 957]




Perceptron

[Rosenblatt | 957]




Multi-Layer Perceptron

(a.k.a. Neural Networks) [Rosenblatt 1961]
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o(a) = max(a,0)
Rectified Linear Units
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Multi-Layer Perceptron

[Rosenblatt 1961]

(a.k.a. Neural Networks, Deep Learning)
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DEEP LEARNING WORKS
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Problems when networks get really deep.
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VERY DEEP NETWORKS
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RESIDUAL NETWORKS

Skip-connection
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ResNet Architecture: [He, Zhang, Ren, Sun, CVPR’16]
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DENSE AND SLIM
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DENSE AND SLIM

k channels k channels k channels k& channels

k : Growth Rate



FORWARD PROPAGATION




DENSENET
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RESULTS
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ImageNet
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|.2M training images
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Top-1 error (%)

RESULTS ON IMAGENET
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Why do we need huge models!?

[ICLR 2018]
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Some of the images are easy,
others are hard.
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MULTI-SCALE DENSENETS

Time Low-level features

Convolution

[ICLR 2018]
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EAST-AND AR EXAMPLEES

red wine

volcano

(exit at first stage) (exit at last stage)



Try out Dense Connectivity!

- Explicit long term connections

- Best generalization performance

Save the planet with MSD-Nets!
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GPyTorch is a Gaussian Process library, implemented using PyTorch. It is deSIgned-‘for-créatiN flextble‘and modular

Gaussian Process models with ease, so that you don't have to be an expert to use GPs.
This package is currently under development, and is likely to change. Some things you can do right now:

» Simple GP regression (example here)

e Simple GP classification (example here

Constant-Time Predictive Distributions for Gaussian Processes

Geoff Pleiss' Jacob R. Gardner' Kilian Q. Weinberger ! Andrew Gordon Wilson '

o Multitask GP regression (example here

» Scalable GP regression using kernel interpolation (example here)

Abstract
One of the most compelling features of Gaussian
process (GP) regression is its ability to provide
well calibrated posterior distributions. Recent
advances in inducing point methods have drasti-

shortcoming by using the Lanczos decomposition
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 Deep kernel learning (example here)

e And (morel)
If you use GPyTorch, please cite the following papers:

Gardner, Jacob R., Geoff Pleiss, Ruihan Wu, Kilian Q. Weinberger, and Andrew Gordon
Interpaolation far Scalable Gaussian Processes." In AISTATS (2018).

[NIPS 20182, 1C

1803.06058v2 [cs.LG] 19 Mar 2018
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algorithm to rapidly approximate the predictive
covariance matrix. Our approach, which we re-
fer to as LOVE (LanczOs Variance Estimates),
substantially reduces the time and space complex-
ity over any previous method. In practice, it can
compute predictive covariances up to 2,000 times
faster and draw samples 18,000 time faster than
existing methods, all without sacrificing accuracy.

1. Introduction

Gaussian processes (GPs) are fully probabilistic models
which can naturally estimate predictive uncertainty through
posterior variances. These uncertainties play a pivotal role
in many application domains. For example, uncertainty in-
formation is crucial when incorrect predictions could have
catastrophic consequences, such as in medicine (Schulam
& Saria, 2017) or large-scale robotics (Deisenroth et al.,
2015); Bayesian optimization approaches typically incorpo-
rate model uncertainty when choosing actions (Snock et al.,
2012; Deisenroth & Rasmussen, 2011; Wang & Jegelka,
2017); and reliable uncertainty estimates are arguably use-

1050 1952 1951 1956 1058 1960
Year

Figure 1. Comparison of predictive variances on ailine passenger
extrapolation. The variances predicted with LOVE are accurate
within 10, yet can be computed orders of magnitude faster.

small datasets, since learning and inference computations
naively scale cubically with the number of data points (n).
However, recent advances in inducing point methods have
managed to scale up GPs to much larger datasets (Snelson
&G i, 2006; Quiii Candela &

2005; Titsias, 2009). For example, Kernel Interpolation for
Scalable Structured GPs (KISS-GP) scales to millions of
data points (Wilson & Nickisch, 2015; Wilson et al., 2015).
For a given test point x*, KISS-GP expresses the GP’s pre-
dictive mean as a” w(x"), where a is a pre-computed vector
dependent only on training data, and w(x") is a sparse in-
terpolation vector. This particular formulation affords the
ability to compute predictive means in constant time, inde-
pendent of 7.

However, these computational savings do not extend natu-
rally to predictive inties. With KISS-GP, i

ful for ishing trust in predictive models, especially
when predictions would be otherwise difficult to interpret
(Doshi-Velez & Kim, 2017; Zhou et al., 2017).

Although predictive uncertainties are a primary advantage
of GP models, they have recently become their primary com-
putational bottleneck. Historically, this has not always been
the case. The use of GPs used to be limited to problems with

!Cornell University. Correspondence to: Geoff Pleiss <ge-

off@cs.comell.edu’>, Jacob R. Gardner <jrg365@cornell.edu>,
Andrew Gordon Wilson <andrew @cornell.edu.

ML 2018, Al

the p covariance between two test points requires
O(n + mlogm) computations, where m is the number of
inducing points used (see Table 1). While this asymptotic
complexity is lower than that of standard Gaussian process
inference, it quickly becomes prohibitive when 7 is large, or
when we wish to make many repeated computations. Addi-
tionally, drawing samples from the predictive distributions
— a necessary operation in many applications  is similarly
expensive. Matching the reduced complexity of predictive
mean inference has remained an open problem.

In this paper, we provide a solution based on the tridi-

STATS 2017]
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