
DEEP NETWORKS WITH
DENSE CONNECTIVITY

Kilian Q. Weinberger
Cornell University

–Johnny Appleseed

A 3 Minutes Introduction to
“Deep Learning”

Perceptron

w

xi
yi=+1

yj=�1
xj

h(x) = w>x+ bh(x) = w>x+ bh(x) = w>x+ b

[Rosenblatt]1957

Perceptron

w

xi
yi=+1

yj=�1
xj

output

input

h(x)

x1

x2

x3

b

w1

w2

w3

1

[Rosenblatt]

h(x) = w>x+ bh(x) = w>x+ bh(x) = w>x+ b

1957

Multi-Layer Perceptron

xi
yi=+1

yj=�1
xj

�(a) = max(a, 0)
Rectified Linear Units

h(x) = w>x+ bh(x) = w>x+ b� (W0x+ c)

hidden

b

w1

w2

w3

input

x1

x2

x3

1

output

h(x)
1W0

W 0
ij

[Rosenblatt]1961(a.k.a. Neural Networks)

Multi-Layer Perceptron

xi
yi=+1

yj=�1
xj

�(a) = max(a, 0)
Rectified Linear Units

h(x) = w>x+ bh(x) = w>x+ b� (W0x+ c)

hidden

b

input

x1

x2

x3

1

output

h(x)

1

W 0
ij

[Rosenblatt]

wj

W0

1961(a.k.a. Neural Networks)

Multi-Layer Perceptron

hiddeninput

output

h(x)

w

h(x) = w>�(W0�(W2�(W3�(W4x))))

hiddenhiddenhidden

[Rosenblatt]1961(a.k.a. Neural Networks, Deep Learning)

Powered by massive
GPU Servers

DEEP LEARNING WORKS

[ICLR 2018]

Part I

Stille Post

Problems when networks get really deep.

VERY DEEP NETWORKS

input

backward flow of gradients

forward flow of input signal

RESIDUAL NETWORKS

++++ “episcia”

ResNet Architecture: [He, Zhang, Ren, Sun, CVPR’16]

Skip-connection

backward flow of gradients

forward flow of input signal

STOCHASTIC DEPTH

++++ “episcia”

[Huang et al., ECCV’16]

Random Layer Removal

TELEPHONE
CAR

CAR
CAR

CAR

It’s a car!!

(input)

(output)

training

TELEPHONE
CAR

BAR
BAR

BAR

It’s a bar!!

(input)

(output)

testing

(input)

DENSE CONNECTIVITY

C C C C

: Channel-wise concatenation C

[CVPR 2017]

DENSE AND SLIM

C C C C

DENSE AND SLIM

k channels k channels k channels k channels

k : Growth Rate

C C C C

FORWARD PROPAGATION

x4x2x1h1 h2 h3 h4x0 x4x3x2x1x0

x0 x1x0
x3x2x1 x0
x3x2x1x0

DENSENET
C

on
vo

lu
tio

n

Po
ol

in
g

C
on

vo
lu

tio
n

Po
ol

in
g

C
on

vo
lu

tio
n

Po
ol

in
g

Li
ne

ar

Dense Block 1 Dense Block 2 Dense Block 3

Output

RESULTS

DATA SETS

CIFAR-10
10 classes

50K training images

CIFAR-100
100 classes

50K training images

ImageNet
1000 classes

1.2M training images

Krizhevsky et al. 2009 Krizhevsky et al. 2009 Krizhevsky et al. 2009

RESULTS

Cifar-100

25.0
27.9

28

21

14

7

0
Cifar-10

4.9
5.3

6.4
6.4

4.8

3.2

1.6

0.0

Constant Depth (110 Layers, 1.7M)
Stochastic Depth (110 Layers, 1.7M)
Stochastic Depth (1202 Layers, 10M)

RESULTS

Cifar-100

22.3
25.0

27.9
28

21

14

7

0
Cifar-10

4.5
4.9

5.3

6.4
6.4

4.8

3.2

1.6

0.0

Constant Depth (110 Layers, 1.7M)
Stochastic Depth (110 Layers, 1.7M)
Stochastic Depth (1202 Layers, 10M)
DenseNet (100 Layers, 0.8M)

RESULTS

Cifar-100

17.2

22.3
25.0

27.9
28

21

14

7

0
Cifar-10

3.5

4.5
4.9

5.3

6.4
6.4

4.8

3.2

1.6

0.0

Constant Depth (110 Layers, 1.7M)
Stochastic Depth (110 Layers, 1.7M)
Stochastic Depth (1202 Layers, 10M)
DenseNet (100 Layers, 0.8M)
DenseNet (190 Layers, 26M)

45%
lower

38%
lower

RESULTS ON IMAGENET

To
p-

1
er

ro
r

(%
)

20.0

22.0

24.0

26.0

28.0

GFLOPs

3 10 16 23 29

DenseNet
ResNet

To
p-

1
er

ro
r

(%
)

20.0

22.0

24.0

26.0

28.0

Parameters (M)

0 20 40 60 80

DenseNet
ResNet

ResNet-152
ResNet-101

ResNet-50

ResNet-34

ResNet-152ResNet-101

ResNet-50

ResNet-34

DenseNet-264(k=48)
DenseNet-264

DenseNet-201

DenseNet-169

DenseNet-121 DenseNet-121

DenseNet-169

DenseNet-201

DenseNet-264
DenseNet-264(k=48)

[ICLR 2018]

Part II

Why do we need huge models?

"easy" dog "hard" dog

EASY & HARD SAMPLES

 Some of the images are easy,
others are hard.

ACCURACY & SPEED

Accuracy

ResNet-50
(75%)

AlexNet
(57%)

Inference Time

AlexNet
(0.25 ms)

ResNet-50
(3.8ms)

+18%

+1500%

57%

(on ImageNet)

EARLY EXITS
C

on
vo

lu
tio

n

Po
ol

in
g

C
on

vo
lu

tio
n

Po
ol

in
g

C
on

vo
lu

tio
n

Po
ol

in
g

Li
ne

ar

Output

Time

EARLY EXITS
C

on
vo

lu
tio

n

Po
ol

in
g

C
on

vo
lu

tio
n

Po
ol

in
g

C
on

vo
lu

tio
n

Po
ol

in
g

Li
ne

ar

Output

Time

0.0 0.5 1.0 1.5 2.0 2.5

average budget (in MUL-ADD) ⇥108

60

62

64

66

68

70

72

74

76

78

ac
cu

ra
cy

(%
)

ResNet-110

DenseNet-88

Budgeted batch classification on CIFAR-100

MSDNet with dynamic evaluation

MSDNet w/o dynamic evaluation

ResNetMC with early-exits

DenseNetMC with early-exits

ResNets (He et al., 2015)

DenseNets (Huang et al., 2016)

Stochastic Depth (Huang et al., 2016)

WideResNet (Zagoruyko et al., 2016)

FractalNet (Larsson et al., 2016)

0.0 0.5 1.0 1.5 2.0 2.5

average budget (in MUL-ADD) ⇥108

60

62

64

66

68

70

72

74

76

78

ac
cu

ra
cy

(%
)

ResNet-110

DenseNet-88

Budgeted batch classification on CIFAR-100

MSDNet with dynamic evaluation

MSDNet w/o dynamic evaluation

ResNetMC with early-exits

DenseNetMC with early-exits

ResNets (He et al., 2015)

DenseNets (Huang et al., 2016)

Stochastic Depth (Huang et al., 2016)

WideResNet (Zagoruyko et al., 2016)

FractalNet (Larsson et al., 2016)

EARLY EXITS
C

on
vo

lu
tio

n

Po
ol

in
g

C
on

vo
lu

tio
n

Po
ol

in
g

C
on

vo
lu

tio
n

Po
ol

in
g

Li
ne

ar

Output

Time

Low-level features Mid-level features High-level features

EARLY EXITS
C

on
vo

lu
tio

n

Po
ol

in
g

C
on

vo
lu

tio
n

Po
ol

in
g

C
on

vo
lu

tio
n

Po
ol

in
g

Li
ne

ar

Output

Time

Low-level features Mid-level features High-level features

Middl

Middle

MULTI-SCALE DENSENETS

Time Low-level features

Mid-level features

High-level features
Pooling

C
on

vo
lu

tio
n

Convolution

Pooling

Convolution

Output

Linear

Pooling

Tim
e

[ICLR 2018]

0.0 0.5 1.0 1.5 2.0 2.5

average budget (in MUL-ADD) ⇥108

60

62

64

66

68

70

72

74

76

78

ac
cu

ra
cy

(%
)

ResNet-110

DenseNet-88

Budgeted batch classification on CIFAR-100

MSDNet with dynamic evaluation

MSDNet w/o dynamic evaluation

ResNetMC with early-exits

DenseNetMC with early-exits

ResNets (He et al., 2015)

DenseNets (Huang et al., 2016)

Stochastic Depth (Huang et al., 2016)

WideResNet (Zagoruyko et al., 2016)

FractalNet (Larsson et al., 2016)

92% reduction in MUL-ADD FLOPS!

0.0 0.5 1.0 1.5 2.0 2.5

average budget (in MUL-ADD) ⇥108

88

89

90

91

92

93

94

95

ac
cu

ra
cy

(%
)

ResNet-110

DenseNet-88

Batch computational learning on CIFAR-10

MSDNet with early-exits

ResNetMC with early-exits

DenseNetMC with early-exits

ResNets (He et al., 2015)

DenseNets (Huang et al., 2016)

Stochastic Depth-110 (Huang et al., 2016)

WideResNet-40 (Zagoruyko et al., 2016)

red wine

volcano

"easy" "hard"

EASY AND HARD EXAMPLES

(exit at first stage) (exit at last stage)

Try out Dense Connectivity!

Explicit long term connections
Best generalization performance

Save the planet with MSD-Nets!

Constant-Time Predictive Distributions for Gaussian Processes

Geoff Pleiss
1

Jacob R. Gardner
1

Kilian Q. Weinberger
1

Andrew Gordon Wilson
1

Abstract

One of the most compelling features of Gaussian
process (GP) regression is its ability to provide
well calibrated posterior distributions. Recent
advances in inducing point methods have drasti-
cally sped up marginal likelihood and posterior
mean computations, leaving posterior covariance
estimation and sampling as the remaining compu-
tational bottlenecks. In this paper we address this
shortcoming by using the Lanczos decomposition
algorithm to rapidly approximate the predictive
covariance matrix. Our approach, which we re-
fer to as LOVE (LanczOs Variance Estimates),
substantially reduces the time and space complex-
ity over any previous method. In practice, it can
compute predictive covariances up to 2,000 times
faster and draw samples 18,000 time faster than
existing methods, all without sacrificing accuracy.

1. Introduction

Gaussian processes (GPs) are fully probabilistic models
which can naturally estimate predictive uncertainty through
posterior variances. These uncertainties play a pivotal role
in many application domains. For example, uncertainty in-
formation is crucial when incorrect predictions could have
catastrophic consequences, such as in medicine (Schulam
& Saria, 2017) or large-scale robotics (Deisenroth et al.,
2015); Bayesian optimization approaches typically incorpo-
rate model uncertainty when choosing actions (Snoek et al.,
2012; Deisenroth & Rasmussen, 2011; Wang & Jegelka,
2017); and reliable uncertainty estimates are arguably use-
ful for establishing trust in predictive models, especially
when predictions would be otherwise difficult to interpret
(Doshi-Velez & Kim, 2017; Zhou et al., 2017).

Although predictive uncertainties are a primary advantage
of GP models, they have recently become their primary com-
putational bottleneck. Historically, this has not always been
the case. The use of GPs used to be limited to problems with

1Cornell University. Correspondence to: Geoff Pleiss <ge-
off@cs.cornell.edu>, Jacob R. Gardner <jrg365@cornell.edu>,
Andrew Gordon Wilson <andrew@cornell.edu>.

1950 1952 1954 1956 1958 1960
Year

100

200

300

400

500

600

#
p
as

se
n
ge

rs
(t

h
ou

sa
n
d
s)

Train Test

Airline Passenger Prediction

KISS-GP w/o LOVE

KISS-GP w/ LOVE

3

x1500

1958.526 1958.5266
499.0

499.3

Figure 1. Comparison of predictive variances on airline passenger
extrapolation. The variances predicted with LOVE are accurate
within 10�4, yet can be computed orders of magnitude faster.

small datasets, since learning and inference computations
naı̈vely scale cubically with the number of data points (n).
However, recent advances in inducing point methods have
managed to scale up GPs to much larger datasets (Snelson
& Ghahramani, 2006; Quiñonero-Candela & Rasmussen,
2005; Titsias, 2009). For example, Kernel Interpolation for
Scalable Structured GPs (KISS-GP) scales to millions of
data points (Wilson & Nickisch, 2015; Wilson et al., 2015).
For a given test point x⇤, KISS-GP expresses the GP’s pre-
dictive mean as a>w(x⇤), where a is a pre-computed vector
dependent only on training data, and w(x⇤) is a sparse in-
terpolation vector. This particular formulation affords the
ability to compute predictive means in constant time, inde-
pendent of n.

However, these computational savings do not extend natu-
rally to predictive uncertainties. With KISS-GP, computing
the predictive covariance between two test points requires
O(n+m logm) computations, where m is the number of
inducing points used (see Table 1). While this asymptotic
complexity is lower than that of standard Gaussian process
inference, it quickly becomes prohibitive when n is large, or
when we wish to make many repeated computations. Addi-
tionally, drawing samples from the predictive distributions
– a necessary operation in many applications – is similarly
expensive. Matching the reduced complexity of predictive
mean inference has remained an open problem.

In this paper, we provide a solution based on the tridi-

ar
X

iv
:1

80
3.

06
05

8v
2

 [c
s.L

G
]

19
 M

ar
 2

01
8

[NIPS 2018?, ICML 2018, AISTATS 2017]

SPONSORS

[If time click here]

THANKS TO …

Paul Upchurch
Cornell

Kavita Bala
Cornell

Robert Pless
G. W. U.

Dan Sedra
Amazon

Zhuang Liu
U.C. Berkeley

Laurens v.d. Maaten
Facebook

Yu Sun
U.C. Berkeley

Gao Huang
Cornell

Noah Snavely
Cornell

Geoff Pleiss
Cornell

Jake Gardner
Cornell

… and Danlu Chen, Tianhong Li, Felix Wu

