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Plan

● Empirical risk minimization under fairness constraints

● Fairness and multitask learning (MTL)

● Privacy and MTL

● Hyper-parameter optimization and adaptive data analysis

Based on the papers: 

M. Donini, L. Oneto, S. Ben-David, J. Shawe-Taylor, & M. P.  Empirical Risk Minimization Under 
Fairness Constraints. (To appear in NIPS 2018)

L. Oneto, M. Donini, A. Elders, & M. P. Taking Advantage of Multitask Learning for Fair 
Classification.  (Submitted)



Need for Fairness and Privacy in AI



Fairness

● What?
○ Ensure that the learned model does not treat subgroups in the population ‘unfairly’

● Why?
○ Avoid cascade effects in perpetrating biases in the data

● In order to create fair models we need
○ a formal definition of fairness
○ a way to impose fairness during model construction

● We will focus on binary classification problems!



Effect of Fairness Constraint
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Notions of Fairness and How to Impose Them

● Many notions are available in literature
○ Equalized Odds and Equal Opportunity (True Positive Parity)
○ Demographic Parity, Accuracy Parity
○ Predictive (Positive or Negative) Value Parity
○ Fairness Through Awareness and Fairness through Causality

● How to impose these notions?
○ Pre-Processing (modify the data)
○ In-Processing (modify the algorithm)
○ Post-Processing (modify the learned model)



Equal Opportunity

Equal Opportunity (EO) [Hardt et al. 2017] demands the same True Positive Rate 
among the groups

Requires non-discrimination only within the “advantaged” outcome class (e.g. 
getting a job). Equalized odds extend this to the both positive and negative class



Imposing EO In-Processing

Learning methods aim to find a model which minimizes the risk (error)

Our approach: search for a fair model that minimizes the risk



Generalization of the EO

Definition of Epsilon-Fairness

● EO is recovered using the hard loss:

● If the linear loss is exploited



Our Problem

● Original Problem

● Our proposal (generalization of the EO)

● Its empirical version

Goal: 

● Consistency properties
● Computational efficiency

● We assume the space of functions to be learnable



Consistency Result

Ideal model

FERM (Fair Empirical Risk Minimization) estimator

FERM is

● Consistent w.r.t. the risk
● Consistent w.r.t. the fairness 



Convex FERM Estimator 

● Problem (Hard Loss for Error & Hard Loss for Fairness) Non-Convex

● FERM Estimator (Hard Loss for Error & Hard Loss for Fairness) Non-Convex

● FERM Estimator (Hinge Loss for Error & Linear Loss for Fairness) Convex



How Good Is Our Approximation?

FERM Estimator (Hard Loss for Error & Hard Loss for Fairness) Non-Convex

FERM Estimator (Hinge Loss for Error & Linear Loss for Fairness) Convex

The Hinge Loss ensures that

Moreover it is possible to prove that

Together these observation justify the method



Our Convex Problem and Kernel Methods

Convex FERM:

Kernel Methods:

The constraint becomes

The problem (in feature space)

The dual formulation (with kernels)



Observation

If            and in the linear case our In-Processing method becomes a 
Pre-Processing method

With a simple preprocessing we can make fair any linear (or kernel) based method

● See paper for experiments with the Lasso



Test & Dataset

Performance measures

● Accuracy (ACC)
● Difference of EO (DEO)

Modified validation procedure: select the fairest model among those with accuracy 
above 97% that of the most accurate model



Results



Using the Sensitive Feature?

Accuracy increases if s is used as a predictor



Using the Sensitive Feature?

Fairness measure tends to improve if s is not in the functional form of the model 



Lessons Learned

Tension between accuracy and fairness 

● Accuracy increased using the sensitive feature

● Removing the sensitive feature
○ Usually increases fairness 

(see previous results)
○ It may not ensure fairness 

(other feature correlated with the sensitive one)



Multi Task Learning (MTL) 

● Framework for solving a collection of related learning problems jointly

● When problems (tasks) are closely related, jointly learning can be more 
efficient than learning independently

○ Single Task Learning: learn a single model for all the groups
○ Independent Task Learning: learn a model for each group
○ Multi Task Learning: jointly learn both a shared and group specific models



Approach

● Optimize model accuracy and fairness without explicitly using the sensitive 
feature in the functional form of the model

● Our method is based on two key ideas
○ Use MTL enhanced with fairness constraints to jointly learn group specific classifiers that 

leverage information between sensitive groups 
○ Since learning group specific models might not be permitted, we propose to first predict the 

sensitive features by any learning method and then to use the predicted sensitive feature



MTL plus Fairness

We build on “regularization around a common mean” for jointly learn a shared and 
group specific models

Then we generalized our FERM fairness constraint to the MTL framework

Constrain for shared 
model

Constrain for group 
specific model



Datasets

ADULT COMPAS



Predicting the Sensitive Feature

ADULT COMPAS



Results (short version)

Comparison between 

● (S = 0) the shared model 
trained with MTL, with fairness 
constraint, and no sensitive 
feature in the predictors

● (S = 1) the group specific 
models trained with MTL, with 
fairness constraint, the sensitive 
feature exploited as predictor

● BUMP IN ACCURACY (S = 1)



Results (short version)

Comparison between 

● The group specific models 
trained with MTL, with fairness 
constraint, and the true 
sensitive feature exploited as a 
predictor (P = 0) 

● Against the same model when 
the predicted sensitive feature 
exploited as predictor (P = 1)

● BUMP IN FAIRNESS (P = 1)
● MILD DECREASE IN 

ACCURACY (P=1)



Privacy: Aggregation is enough?

PRIVACY
VIOLATED

PRIVACY
NOT VIOLATED
INFORMATION 
PRESERVED

NO!

Need NOISE!

Deterministic Algorithms

Randomized Algorithms



Differentially Private Algorithm
Hypotheses: 

● randomized algorithms
● samples are i.i.d.

Idea: 

If, with the result of the learning procedure, we are not able to retrieve what data 
we used for learning then the model will generalize

Noise as a tool: 

● must be small enough not to hide completely the true answer 
● must be large enough to maintain the privacy in the data



Two Pigeons with one Stone!
DP Algorithms also Generalize

1. Dwork, C., Feldman, V., Hardt, M., Pitassi, T., Reingold, O., Roth, A., 2015b. Preserving statistical validity in adaptive data 
analysis, in: Annual ACM Symposium on Theory of Computing.

2. Oneto, L., Ridella, S., & Anguita, D. (2017). Differential privacy and generalization: Sharper bounds with applications. Pattern 
Recognition Letters, 89, 31-38.



What if the Learning Algorithm is not DP?

● DP theory allows to state the conditions under which a hold-out set can be 
reused without risk of false discovery through a DP procedure called 
Thresholdout

● This results is very important in Adaptive Data Analysis
■ Hyperparameter Optimization
■ Competitions
■ etc.



Classical Holdout in Adaptive Data Analysis

Image Credits: 
https://ai.googleblog.com/2015/08/the-reusable-holdout-preserving.html



Thresholdout (Reusable Holdout)



Generalization Bounds in Adaptive Data Analysis

Classical Holdout in Adaptive Data Analysis

Thresholdout (Reusable Holdout)

Advantage when

1. Dwork, C., Feldman, V., Hardt, M., Pitassi, T., Reingold, O., Roth, A., 2015c. The reusable holdout: Preserving validity in 
adaptive data analysis. Science 349, 636–638.

2. Oneto, L., Ridella, S., & Anguita, D. (2017). Differential privacy and generalization: Sharper bounds with applications. Pattern 
Recognition Letters, 89, 31-38.



Future work

Broad goal is to extend DP theory to MTL setting:

- Partial (wrt. features or tasks) Privacy Constraints 
- Links between privacy and fairess

- Hyperparameters Optimization (Thresholdout algorithm)


