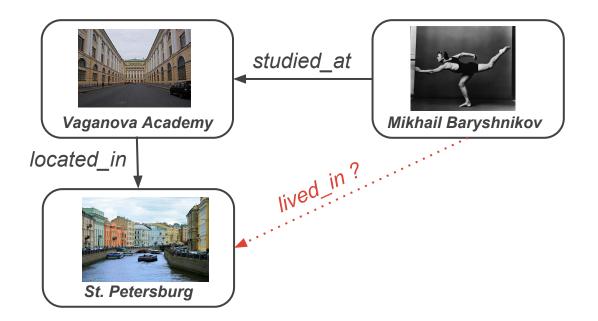
Extracting and Modeling Relations with Graph Convolutional Networks

Ivan Titov

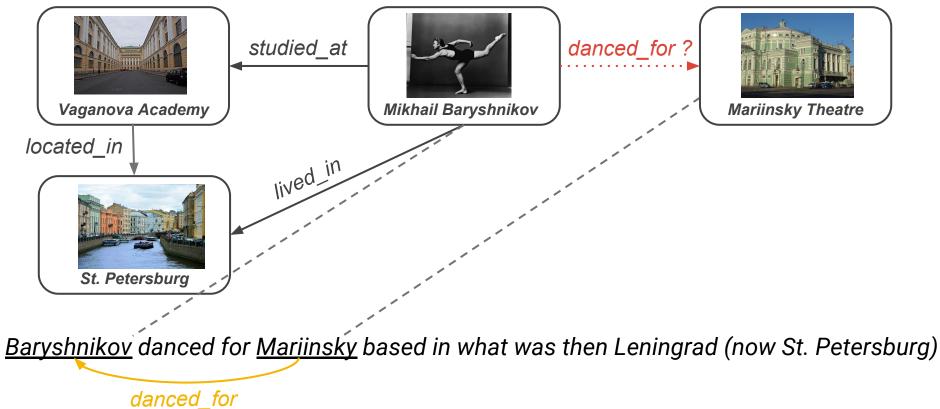
with Diego Marcheggiani, Michael Schlichtkrull, Joost Bastings, Thomas Kipf, Max Welling, Wilker Aziz, Khalil Sima'an, Rianne van den Berg and Peter Bloem

Universiteit van Amsterdam

Inferring missing facts in knowledge bases: link prediction

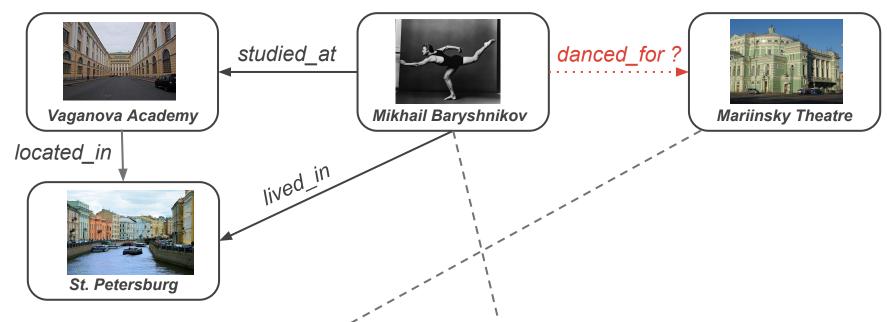


Relation Extraction



uanceu_ioi

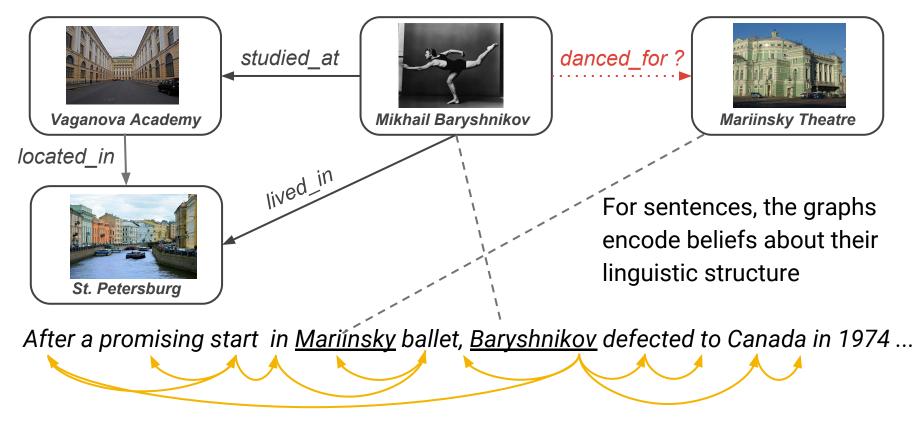
Generalization of link prediction and relation extraction



After a promising start in Mariinsky ballet, Baryshnikov defected to Canada in 1974 ...

E.g., Universal Schema (Reidel et al., 2013)

KBC: it is natural to represent both sentences and KB with graphs



How can we model (and exploit) these graphs with graph neural networks?

Outline

Graph Convolutional Networks (GCNs)

Link Prediction with Graph Neural Networks

Relational GCNs

Denoising Graph Autoencoders for Link Prediction

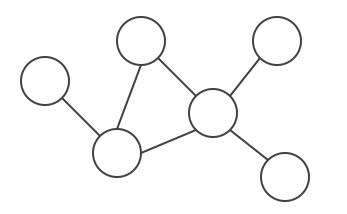
Extracting Semantic Relations: Semantic Role Labeling

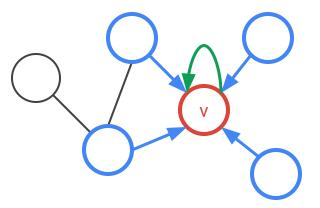
Syntactic GCNs

Semantic Role Labeling Model

Graph Convolutional Networks: Neural Message Passing

Graph Convolutional Networks: message passing



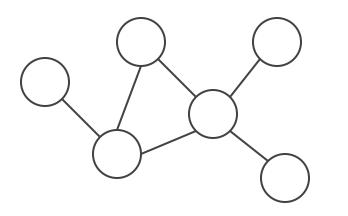


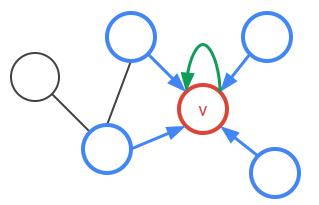
Undirected graph

Update for node v

Kipf & Welling (2017). Related ideas earlier, e.g., Scarselli et al. (2009).

Graph Convolutional Networks: message passing





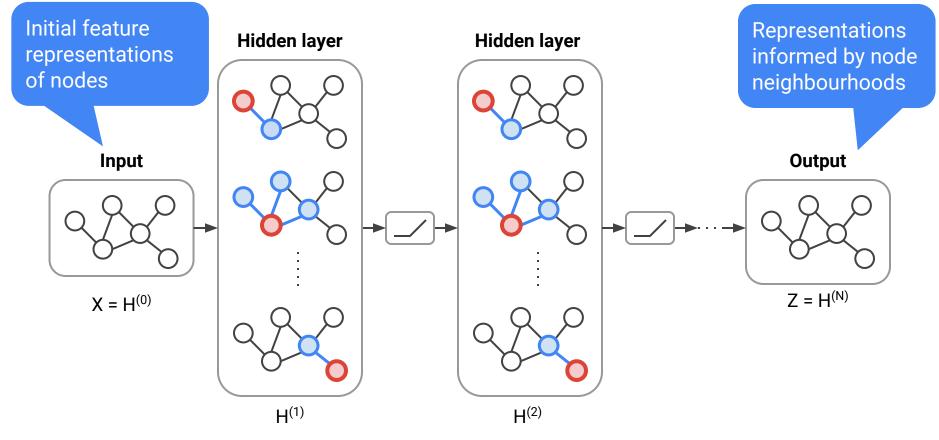
Undirected graph

Update for node v

$$\mathbf{h}_{v} = \operatorname{ReLU}(W_{\operatorname{loop}}\mathbf{h}_{v} + \sum_{u \in \mathcal{N}(v)} W\mathbf{h}_{u})$$

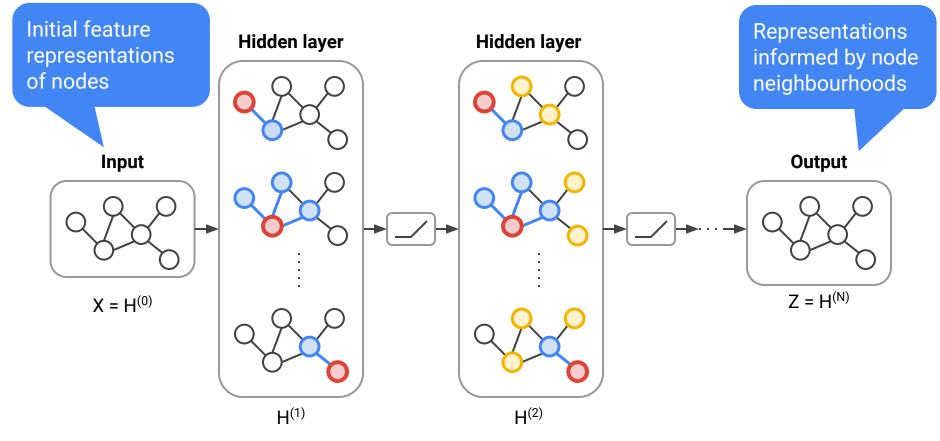
Kipf & Welling (2017). Related ideas earlier, e.g., Scarselli et al. (2009).

GCNs: multilayer convolution operation



Parallelizable computation, can be made quite efficient (e.g., Hamilton, Ying and Leskovec (2017)).

GCNs: multilayer convolution operation



Parallelizable computation, can be made quite efficient (e.g., Hamilton, Ying and Leskovec (2017)).

Shown very effective on a range of problems - citations graphs, chemistry, ...

Mostly:

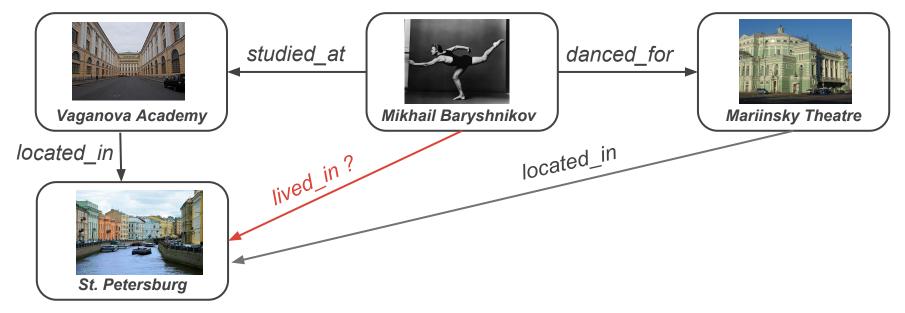
- Unlabeled and undirected graphs
- Node labeling in a single large graph (transductive setting)
- Classification of graphlets

How to apply GCNs to graphs we have in knowledge based completion / construction?

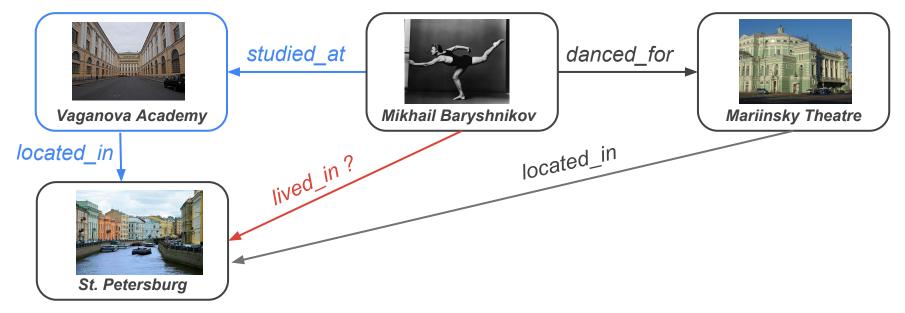
See Bronstein et al. (Signal Processing, 2017) for an overview

Link Prediction with Graph Neural Networks

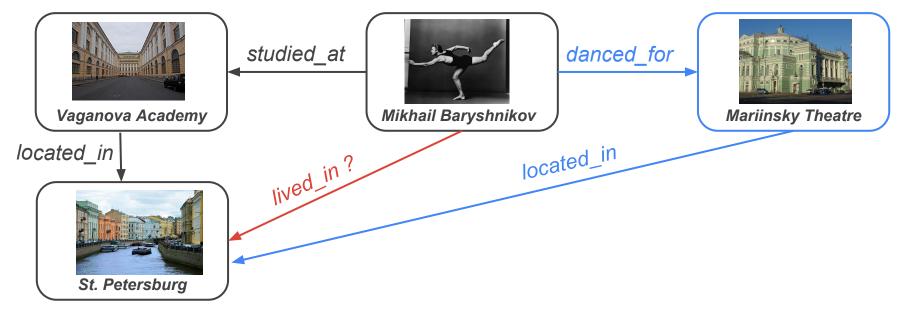
Link Prediction

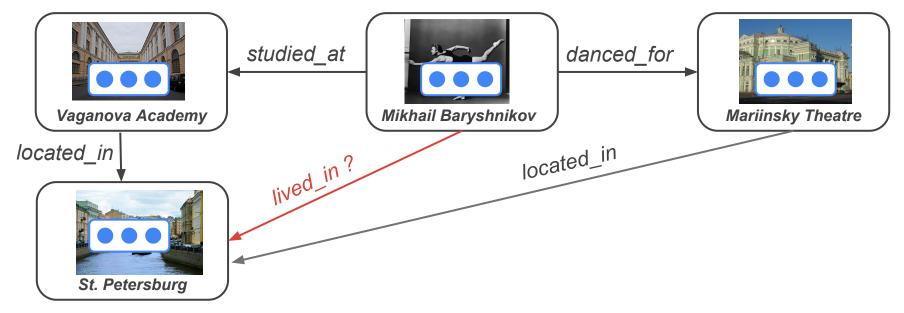


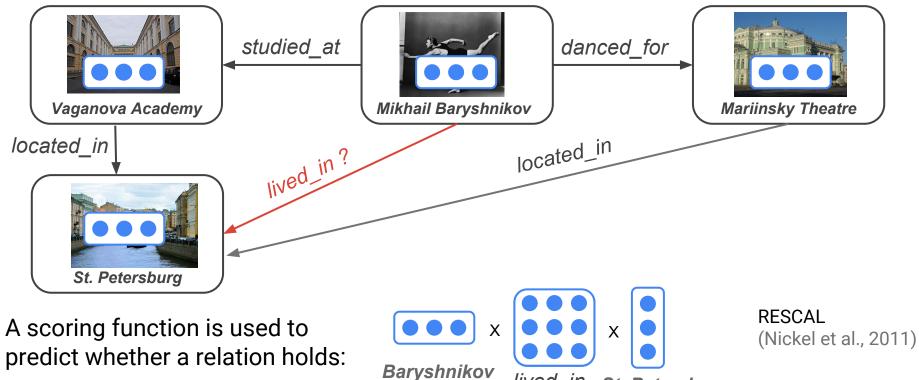
Link Prediction



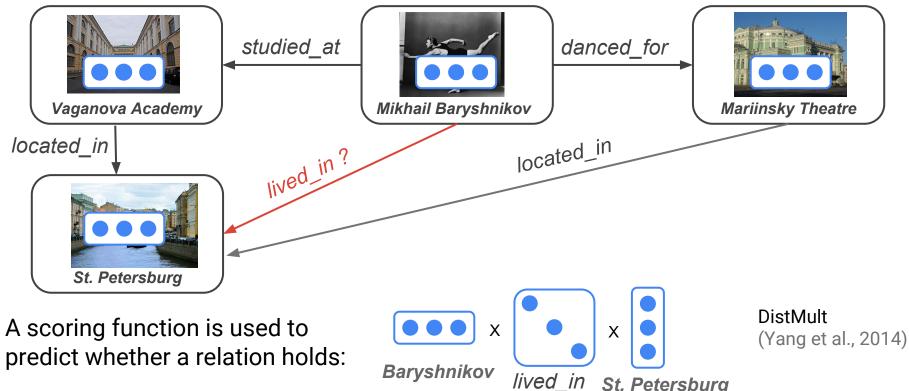
Link Prediction



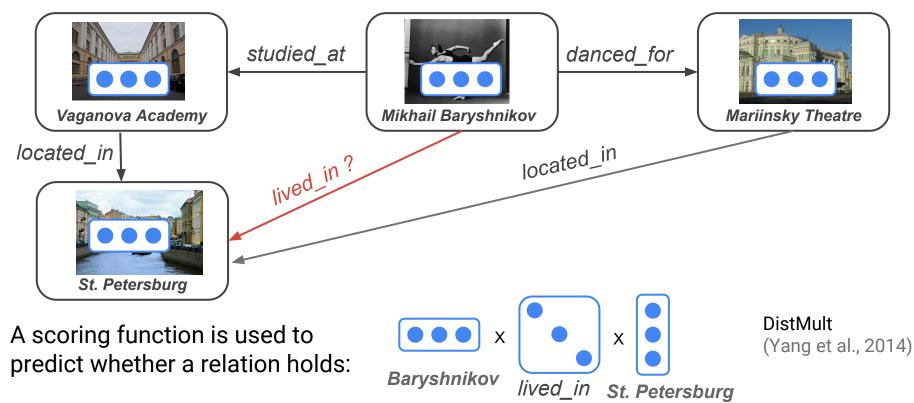




lived_in St. Petersburg

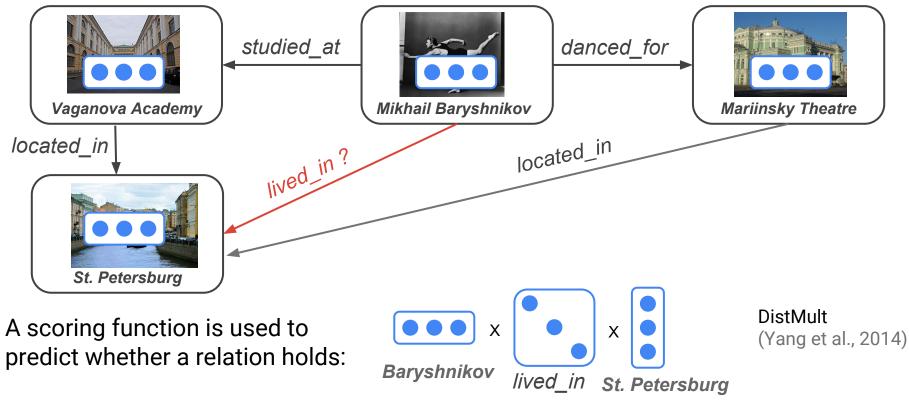


St. Petersburg

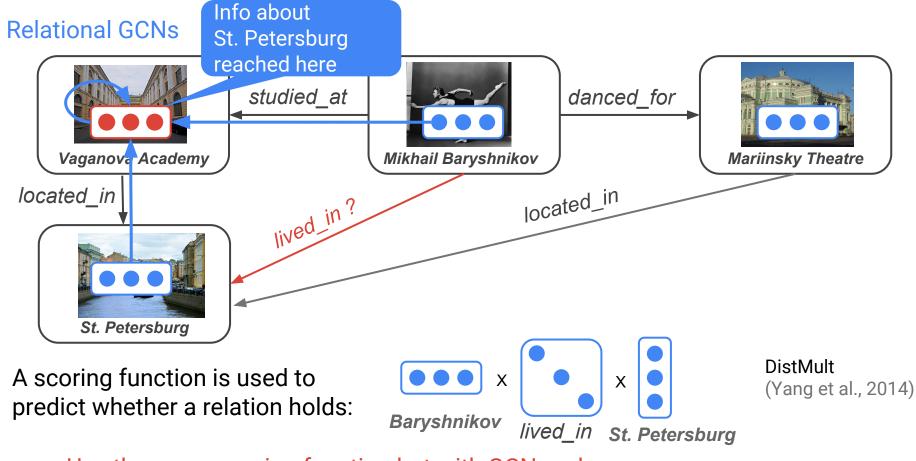


Relies on SGD to propagate information across the graph

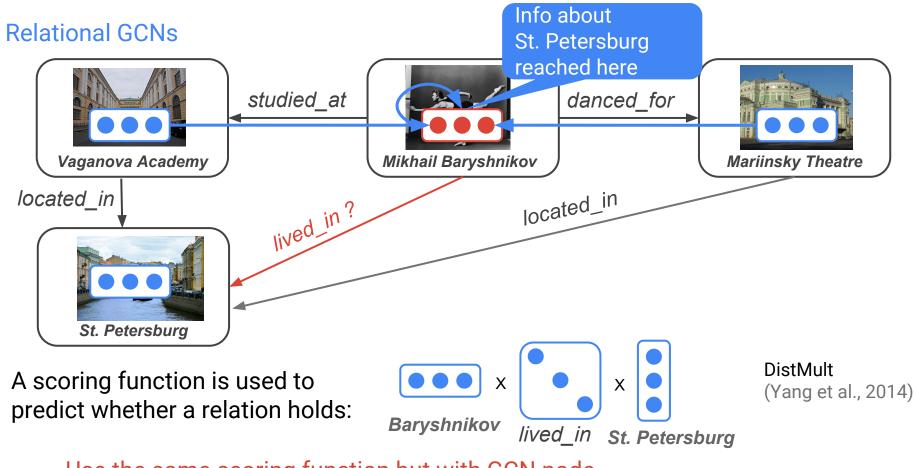
Relational GCNs



Use the same scoring function but with GCN node representations rather than parameter vectors

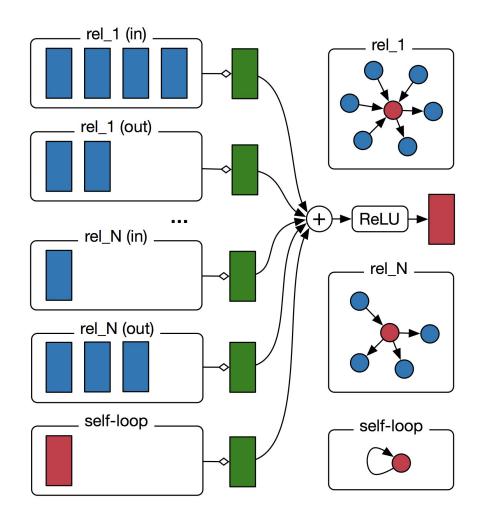


Use the same scoring function but with GCN node representations rather than parameter vectors



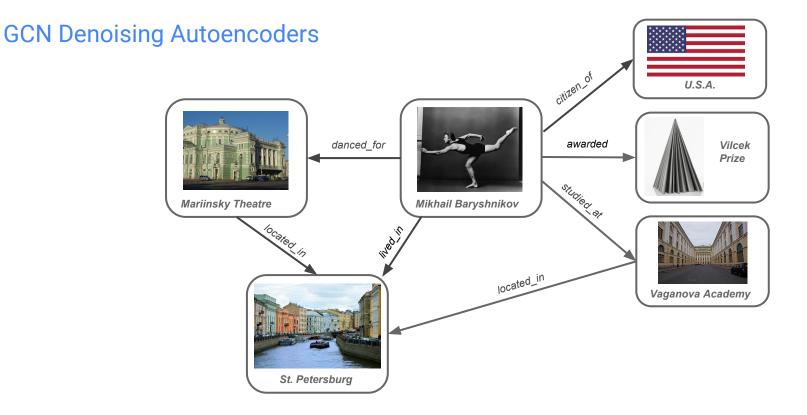
Use the same scoring function but with GCN node representations rather than parameter vectors

Relational GCNs

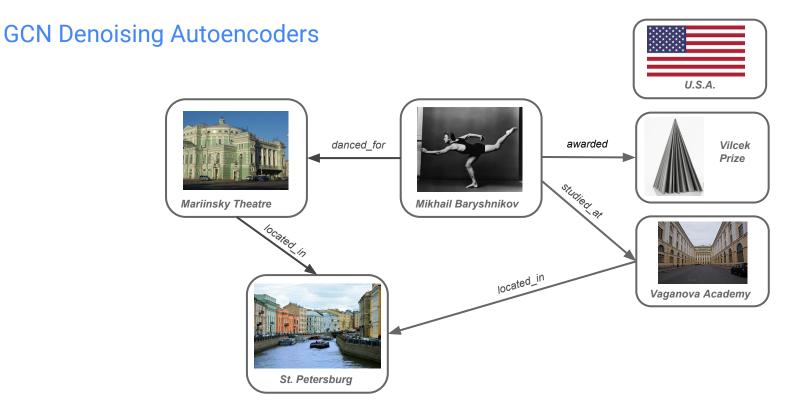


How do we train Relational GCNs?

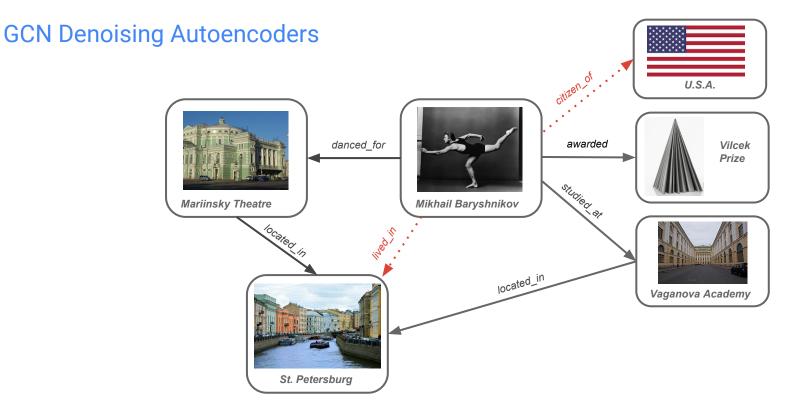
How do we compactly parameterize Relational GCNs?



Take the training graph



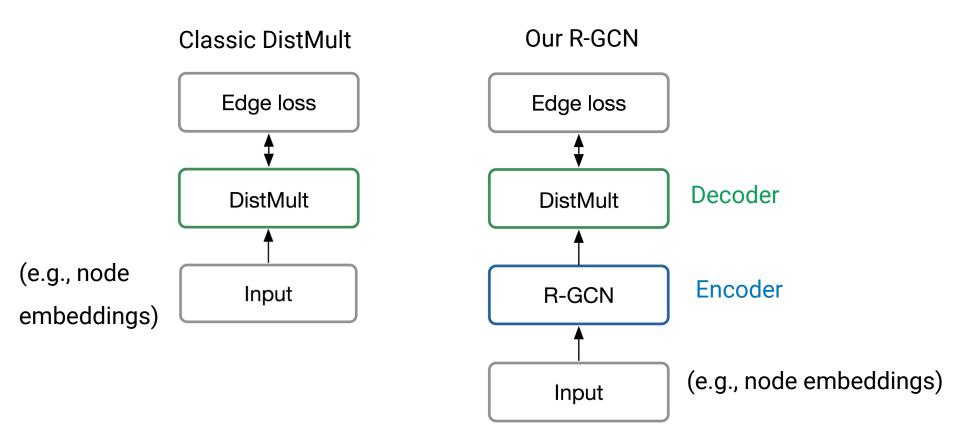
Produce a noisy version: drop some random edges Use this graph for encoding nodes with GCNs



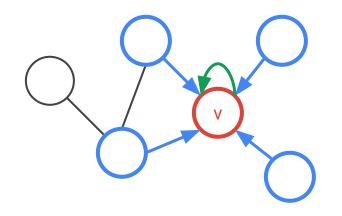
Force the model to reconstruct the original graph (including dropped edges)

(a ranking loss on edges)

Training



Relational GCN



$$\mathbf{h}_{v} = ReLU(\frac{1}{|\mathcal{N}(v)|} \sum_{u \in \mathcal{N}(v)} W_{r(u,v)} \mathbf{h}_{\mathbf{u}})$$

There are too many relations in realistic KBs, we cannot use full rank matrices W_r

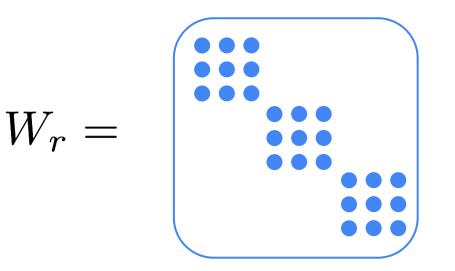
Naive logic:

We score with a diagonal matrix (DistMult), let's use a diagonal one in GCN

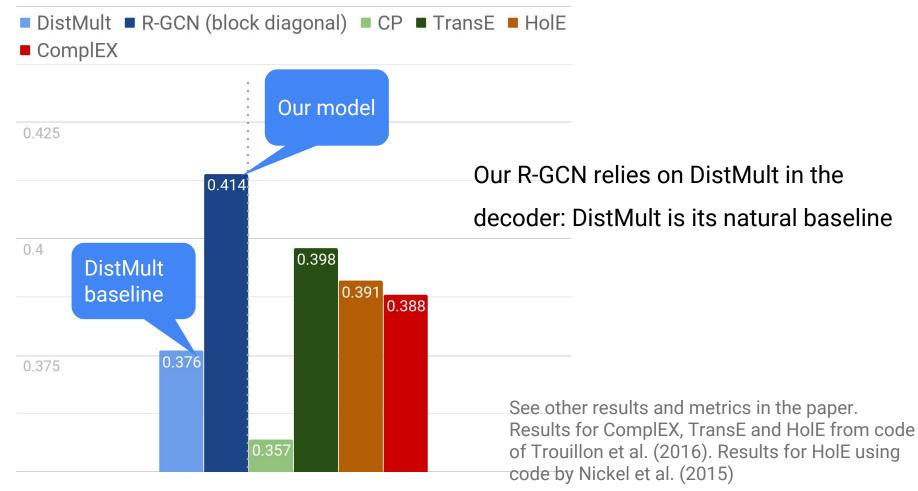
$$W_r = \bullet$$

Block diagonal assumption:

Latent features can be grouped into sets of tightly inter-related features, modeling dependencies across the sets is less important



Results on FB15k-237 (hits@10)



Fast and simple approach to Link Prediction

Captures multiple paths without the need to explicitly marginalize over them

Unlike factorizations, can be applied to **subgraphs unseen in training**

FUTURE WORK:

R-GCNs can be used in combination with more powerful factorizations / decoders

Objectives favouring **recovery of paths** rather than edges

Gates and memory may be effective

Extracting Semantic Relations

Semantic Role Labeling

Closely related to the relation extraction task

Discovering the predicate-argument structure of a sentence

Sequa makes and repairs jet engines

Semantic Role Labeling

Closely related to the relation extraction task

Discovering the predicate-argument structure of a sentence

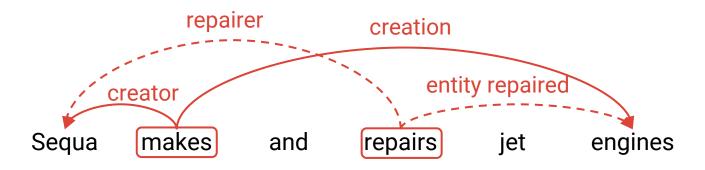
- Discover predicates

Semantic Role Labeling

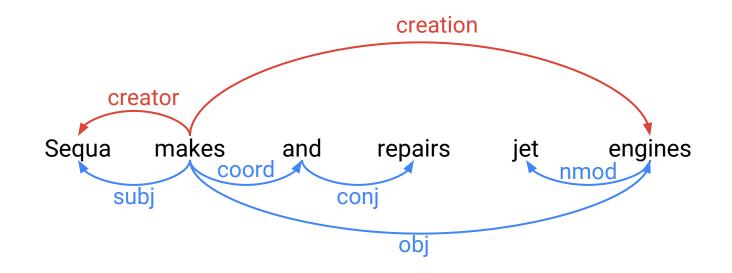
Closely related to the relation extraction task

Discovering the predicate-argument structure of a sentence

- Discover predicates
- Identify arguments and label them with their semantic roles

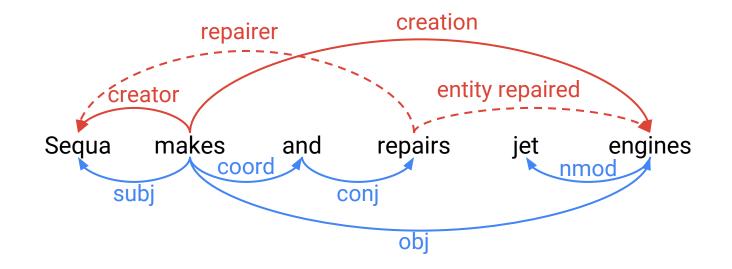


Syntax/semantics interaction



Some syntactic dependencies are mirrored in the semantic graph

Syntax/semantics interaction

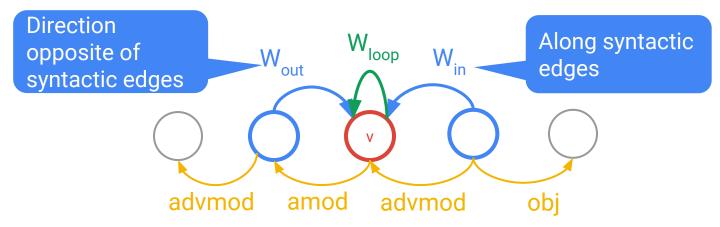


Some syntactic dependencies are **mirrored** in the semantic graph

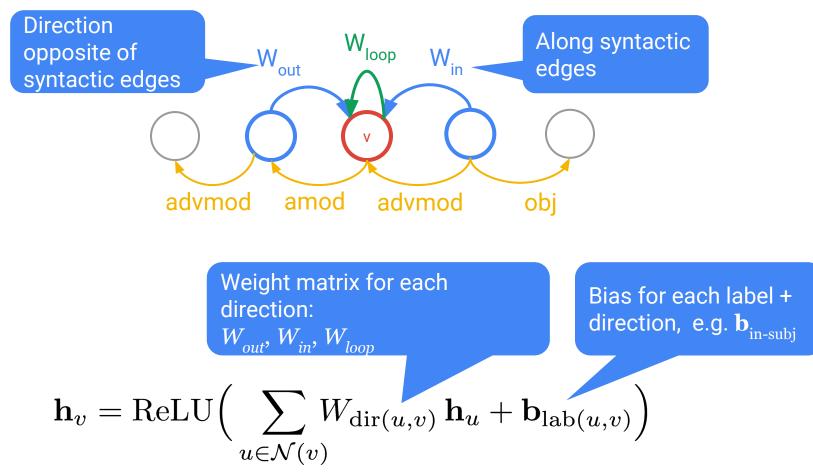
... but not all of them – the syntax-semantics interface is far from trivial

GCNs provide a flexible framework for capturing interactions between the graphs

Syntactic GCNs: directionality and labels



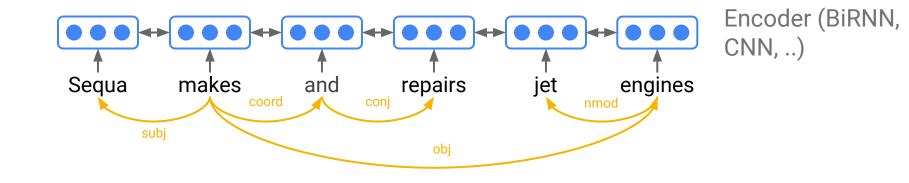
Syntactic GCNs: directionality and labels

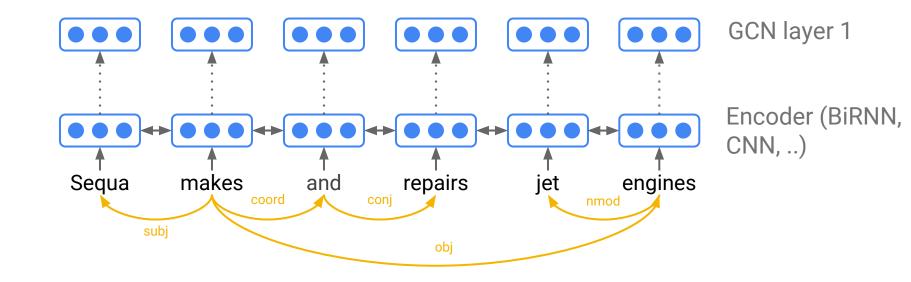


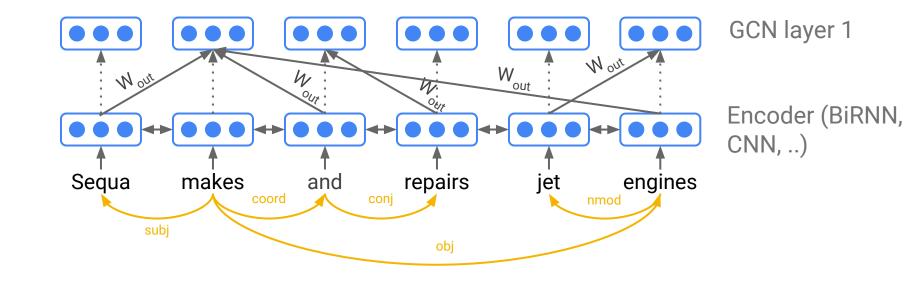
We use parsers to predict syntax

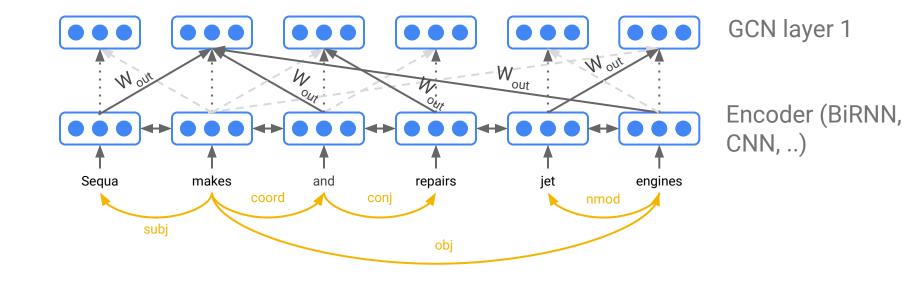
Not all edges are equally informative for the downstream task or reliable

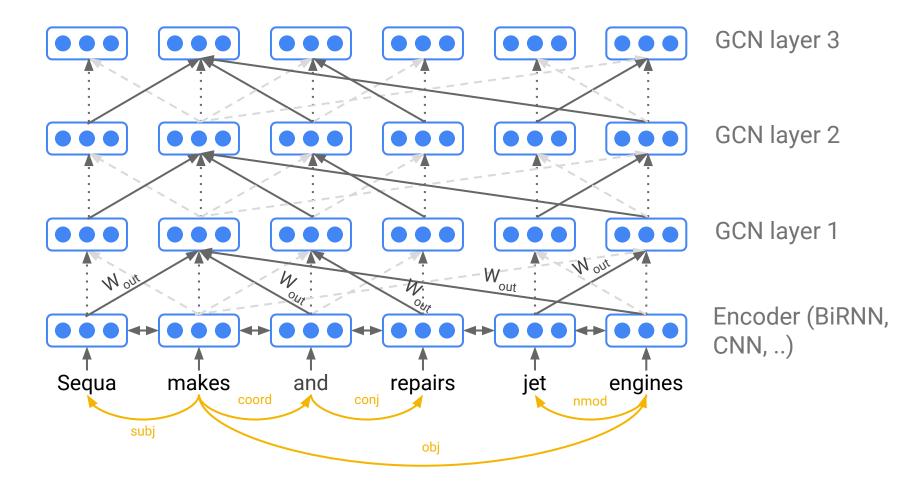
$$g_{u,v} = \sigma \left(\mathbf{h}_{u} \cdot \hat{\mathbf{w}}_{\operatorname{dir}(u,v)} + \hat{b}_{\operatorname{lab}(u,v)} \right)$$
$$\mathbf{h}_{v} = \operatorname{ReLU} \left(\sum_{u \in \mathcal{N}(v)} g_{u,v} \left(W_{\operatorname{dir}(u,v)} \mathbf{h}_{u} + \mathbf{b}_{\operatorname{lab}(u,v)} \right) \right)$$
$$\operatorname{The gate weights the message}$$

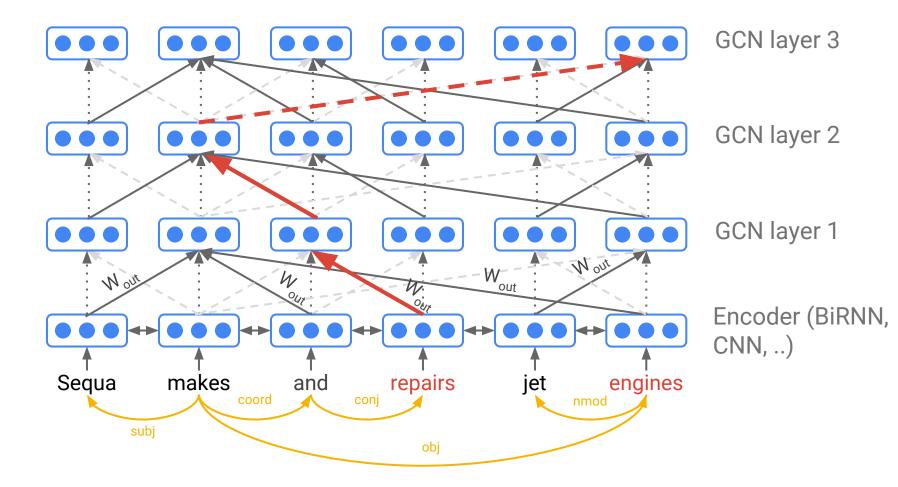




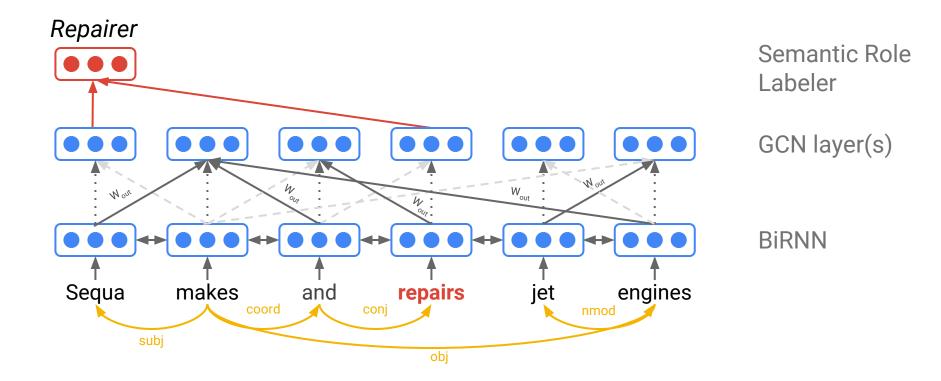


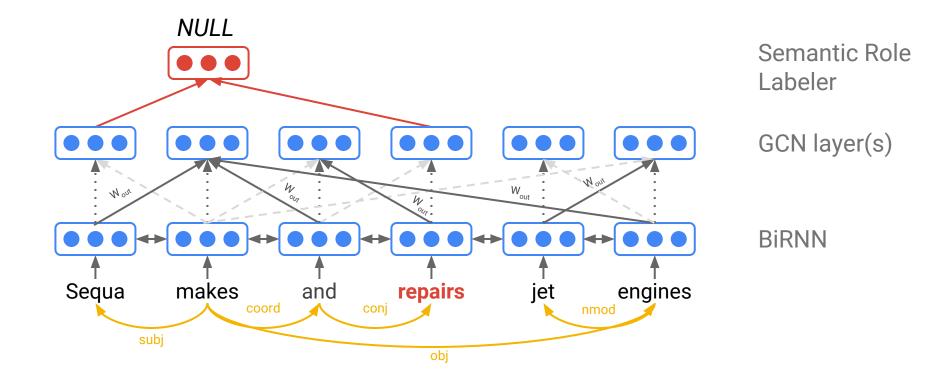


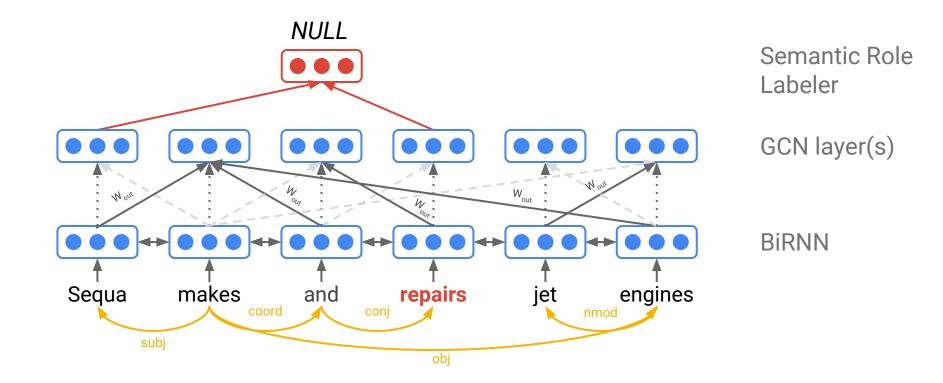


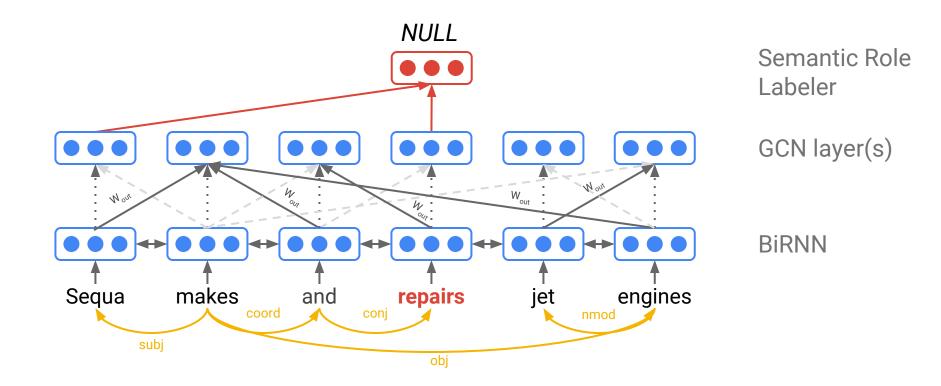


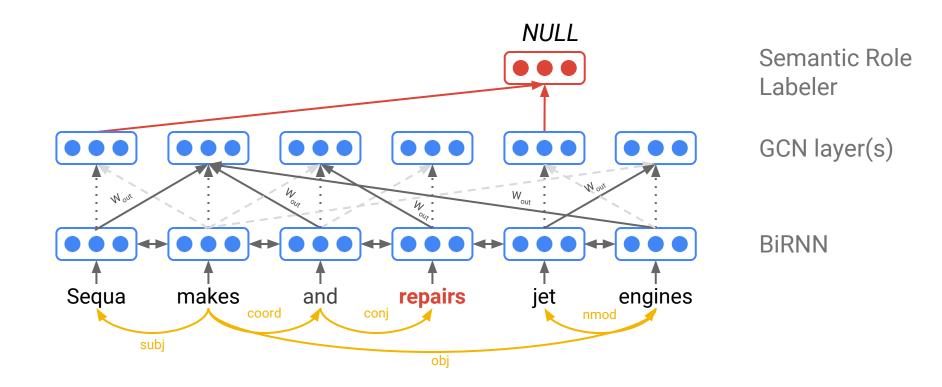
How do we construct a GCN-based semantic role labeler?

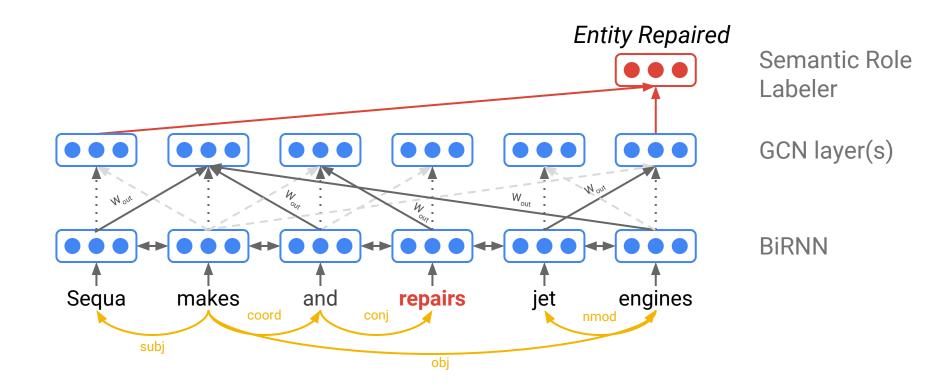




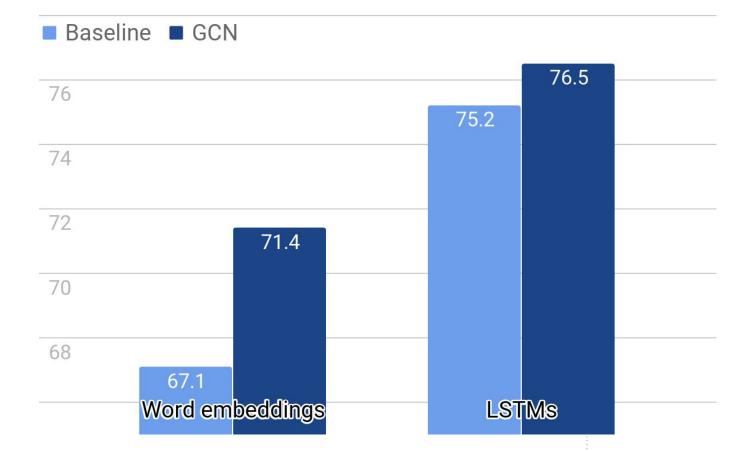








Results (F1) on Chinese (CoNLL-2009, dev set)

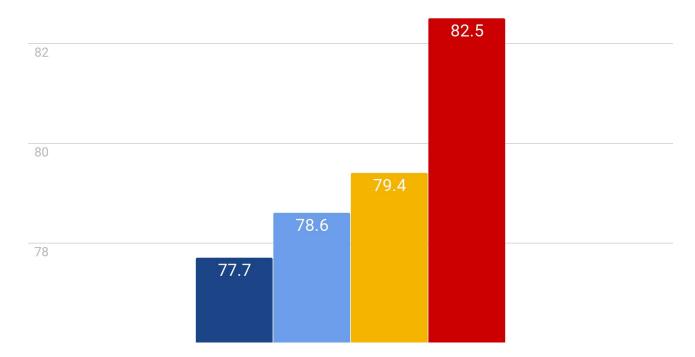


Marcheggiani & Titov (EMNLP, 2017)

Predicate disambiguation is excluded from the F1 metric

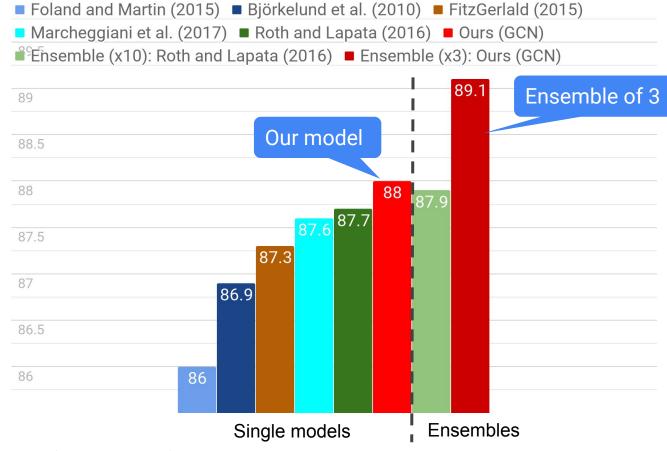
Results (F1) on Chinese (CoNLL-2009, test set)

Zhao et al. (2009)
Björkelund et al. (2010)
Roth and Lapata (2016)
Ours (GCN)



Marcheggiani & Titov (EMNLP, 2017)

Results (F1) on English (CoNLL-2009)



Marcheggiani & Titov (EMNLP, 2017)

Simple and fast approach to integrating linguistic structure into encoders

In principle we can exploit almost **any kind** of linguistic structure:

Semantic role labeling structure

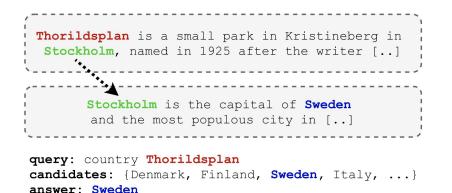
Co-reference chains

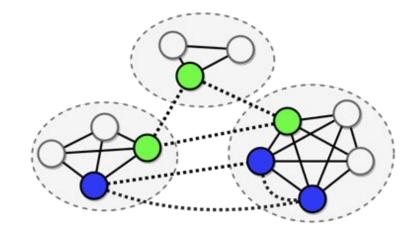
AMR semantic graphs

Their combination

Multi-document Question Answering

De Cao, Aziz and Titov, 2018





Nodes are entities and edges are co-reference links

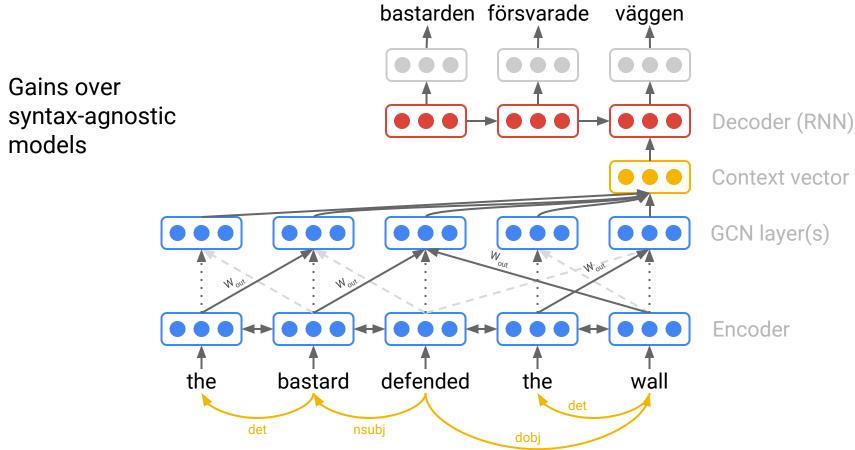
Reasoning on a graph representing a document collection

SAP funded

Multi-document Question Answering

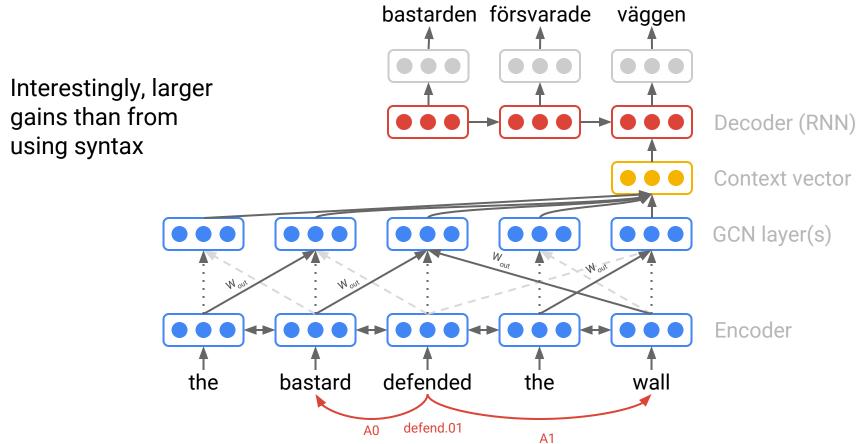
WikiHop						
#	Model / Reference	Affiliation	Date	Accuracy[%]		
1	Entity-GCN	University of Amsterdam && University of Edinburgh	May 2018	67.6		
2	MHQA-GRN	IBM && University of Rochester	August 2018	65.4		
3	Jenga	Facebook AI Research	February 2018	65.3		
4	[anonymized]	[anonymized]	May 2018	64.9		
5	Vanilla CoAttention Model	Nanyang Technological University	December 2017	59.9		
6	Coref-GRU	Carnegie Mellon University.	April 2018	59.3		

Syntactic GCNs for Machine Translation



Bastings, Titov, Aziz, Marcheggiani, Sima'an (EMNLP, 2017)

Semantic GCNs for Machine Translation



Marcheggiani, Bastings, Titov (NAACL 2018)

Graphs can be induced at the same time

Machine translation Bastings et al., 2018

Didn't work as well as treebank syntax w/RNNs

Graphs can be induced at the same time

Machine translation

Didn't work as well as treebank syntax w/RNNs

Bastings et al., 2018

Jointly learning to parse and use parses with GCNs: Perturb-and-Parse

- Differentiable dynamic programming
- Perturb-and-max framework

Corro and Titov (2018)

Others found them also useful for other NLP applications

Graph Convolu	itional Networks for Named Entity			
Cetoli, Alberto Br	agaglia, Stefano O'Harney, Andrew Da Context Scout	aniel Sloan, Marc		
	Graph Convolutional Netwo for Eve	nt-Aware Pooling		
	Thien Huu Nguyen Department of Computer and Information Scien University of Oregon	ce Computer S	h Grishman Science Department /ork University	
Ор				
Haitian Sun*	Early Fusion of Knowledge Bases and Haitian Sun [*] Bhuwan Dhingra [*] Manzil Zaheer Ruslan Salakhutdinov William W. Coh School of Computer Science Carnegie Mellon University		Improves Relation Extraction	
			g,* Peng Qi,* Christopher D. Manning Stanford University	

Conclusions

GCNs in subtasks of KBC (and in NLP beyond KBC):

- Semantic Roles: we proposed GCNs for encoding linguistic knowledge
- Link prediction: GCNs for link prediction (and entity classification) in multi-relational knowledge bases
- Do not have graphs? Latent structure may provide a useful induction bias
- Many other applications

Code available

European Research Council

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Google Focused Research Awards

