
Efficient and Accurate CNN
Models at Edge Compute

Platforms

Mohammad Rastegari
September 2018

AI is confined to the cloud
far from the users at the edge

Bridging the growing divide between AI models dependent
on the cloud and devices running at the edge

Deep learning models reliant on the cloud Growing demand for edge devices

Intelligent cameras that preserve privacy, security and bandwidth at home

Information captured across all
family members devices and
fully synced

Intelligent
cameras on
phones and
wearables

Baby
monitoring
camera

Doorbell security
camera, i.e. people &
threat detection

Camera in
kitchen to
track items for
grocery
shopping

Mobile phone camera used in
car to detect objects on the
road and increase safety

… …

Convolutional Neural Networks

8 Rastegari et al.

-1.4 0.5 … 0.2 2 -1 1 … 1 1

Redundant computations in overlapping areas

=

…

…

…
 …

…

…

…

…

…

…

…

…

…

…

…
 …

…

…

c

…

…

…
 …

 …

…

…

…

…

…

…

…
 …

…

…

…

≈

=

=

=

=

(1) Binarizing Weight

(2) Binarizing Input

(4) Convolution with XNOR-Bitcount

…

…

…

…
 …

Inefficient

Efficient

=

=

(3) Binarizing Input

Fig. 2: This figure illustrates the procedure explained in section 3.2 for approximating a convo-
lution using binary operations.

where 1 is an n-dimensional vector where all of its enteries are 1. 1T can be factored
out from the optimization and the optimal solutions can be achieved from equation 2 as
follow

C
⇤ = sign(Y) = sign(XT) sign(W) = H

⇤T
B

⇤ (9)

Since |Xi|, |Wi| are independent, knowing that Yi = XiWi then,
E [|Yi|] = E [|Xi||Wi|] = E [|Xi|]E [|Wi|] therefore,

�⇤ =

P
|Yi|
n

=

P
|Xi||Wi|

n
⇡

✓
1

n
kXk`1

◆✓
1

n
kWk`1

◆
= �⇤↵⇤ (10)

Binary Convolution: Convolving weight filter W 2 Rc⇥w⇥h (where win � w, hin �
h) with the input tensor I 2 Rc⇥win⇥hin requires computing the scaling factor � for all
possible sub-tensors in I with same size as W. Two of these sub-tensors are illustrated
in figure 2 (second row) by X1 and X2. Due to overlaps between subtensors, comput-
ing � for all possible sub-tensors leads to a large number of redundant computations.
To overcome this redundancy, first, we compute a matrix A =

P
|I:,:,i|
c , which is the

average over absolute values of the elements in the input I across the channel. Then
we convolve A with a 2D filter k 2 Rw⇥h, K = A ⇤ k, where 8ij kij = 1

w⇥h . K
contains scaling factors � for all sub-tensors in the input I. Kij corresponds to � for
a sub-tensor centered at the location ij (across width and height). This procedure is
shown in the third row of figure 2. Once we obtained the scaling factor ↵ for the weight
and � for all sub-tensors in I (denoted by K), we can approximate the convolution
between input I and weight filter W mainly using binary operations:

I ⇤W ⇡ (sign(I)~ sign(W))�K↵ (11)

• AlexNet à1.5B FLOPs
• VGG à 19.6B FLOPs

Number of Operations :

• AlexNet à~3 fps
• VGG à ~0.25 fps

Inference time on CPU :

GPU !
RR

+ − ×

Solutions
• Lower Precision (Quantization)
• Fixed point, binary (XNOR-Net)

• Sparse Models
• Lookup based CNN, Factorizations

• Compact Network Design
• Mobile Net

• How to improve the accuracy?
• Label Refinery

Lower Precision

R
32-bit

B
1-bit

Reducing Precision
• Saving Memory
• Saving Computation

2 {�1,+1}
{-1,+1} {0,1}

MUL XNOR

ADD, SUB Bit-Count (popcount)

8-bit
I

Why Binary?
• Binary Instructions

• AND, OR, XOR, XNOR, PoPCount (Bit-Count)

• Low Power Device

• Easy to Implement in hardware

8 Rastegari et al.

-1.4 0.5 … 0.2 2 -1 1 … 1 1

Redundant computations in overlapping areas

=

…

…

…
 …

…

…

…

…

…

…

…

…

…

…

…
 …

…

…

c

…

…

…
 …

 …

…

…

…

…

…

…

…
 …

…

…

…

≈

=

=

=

=

(1) Binarizing Weight

(2) Binarizing Input

(4) Convolution with XNOR-Bitcount

…

…

…

…
 …

Inefficient

Efficient

=

=

(3) Binarizing Input

Fig. 2: This figure illustrates the procedure explained in section 3.2 for approximating a convo-
lution using binary operations.

where 1 is an n-dimensional vector where all of its enteries are 1. 1T can be factored
out from the optimization and the optimal solutions can be achieved from equation 2 as
follow

C
⇤ = sign(Y) = sign(XT) sign(W) = H

⇤T
B

⇤ (9)

Since |Xi|, |Wi| are independent, knowing that Yi = XiWi then,
E [|Yi|] = E [|Xi||Wi|] = E [|Xi|]E [|Wi|] therefore,

�⇤ =

P
|Yi|
n

=

P
|Xi||Wi|

n
⇡

✓
1

n
kXk`1

◆✓
1

n
kWk`1

◆
= �⇤↵⇤ (10)

Binary Convolution: Convolving weight filter W 2 Rc⇥w⇥h (where win � w, hin �
h) with the input tensor I 2 Rc⇥win⇥hin requires computing the scaling factor � for all
possible sub-tensors in I with same size as W. Two of these sub-tensors are illustrated
in figure 2 (second row) by X1 and X2. Due to overlaps between subtensors, comput-
ing � for all possible sub-tensors leads to a large number of redundant computations.
To overcome this redundancy, first, we compute a matrix A =

P
|I:,:,i|
c , which is the

average over absolute values of the elements in the input I across the channel. Then
we convolve A with a 2D filter k 2 Rw⇥h, K = A ⇤ k, where 8ij kij = 1

w⇥h . K
contains scaling factors � for all sub-tensors in the input I. Kij corresponds to � for
a sub-tensor centered at the location ij (across width and height). This procedure is
shown in the third row of figure 2. Once we obtained the scaling factor ↵ for the weight
and � for all sub-tensors in I (denoted by K), we can approximate the convolution
between input I and weight filter W mainly using binary operations:

I ⇤W ⇡ (sign(I)~ sign(W))�K↵ (11)

XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks 5

tion of BinaryConnect propsed by BinaryNet[11], where both weights and activations
are binarized. Our method is different from them in the binarization method and the
network structure. We also compare our method with BinaryNet on ImageNet, and our
method outperforms BinaryNet by large margin.[39] argued that the noise introduced
by weight binarization provide a form of regularization, which could help to improve
test accuracy. This method binarizes weights while maintaining full precision activa-
tion. [40] proposed fully binary training and testing in an array of committee machines
with randomized input. [41] retraine a previously trained neural network with binary
weights and binary inputs.

3 Binary Convolutional Neural Network

We represent an L-layer CNN architecture with a triplet hI,W, ⇤i. I is a set of ten-
sors, where each element I = Il(l=1,...,L) is the input tensor for the lth layer of CNN
(Green cubes in figure 1). W is a set of tensors, where each element in this set W =
Wlk(k=1,...,Kl) is the kth weight filter in the lth layer of the CNN. Kl is the number of
weight filters in the lth layer of the CNN. ⇤ represents a convolutional operation with
I and W as its operands2. I 2 Rc⇥win⇥hin , where (c, win, hin) represents channels,
width and height respectively.W 2 Rc⇥w⇥h, where w  win, h  hin. We propose
two variations of binary CNN: Binary-weights, where the elements of W are binary
tensors and XNOR-Networks, where elements of both I and W are binary tensors.

3.1 Binary-Weight-Networks

In order to constrain a convolutional neural network hI,W, ⇤i to have binary weights,
we estimate the real-value weight filter W 2 W using a binary filter B 2 {+1,�1}c⇥w⇥h

and a scaling factor ↵ 2 R+ such that W ⇡ ↵B. A convolutional operation can be ap-
priximated by:

I ⇤W ⇡ (I�B)↵ (1)

where, � indicates a convolution without any multiplication. Since the weight values
are binary, we can implement the convolution with additions and subtractions. The bi-
nary weight filters reduce memory usage by a factor of ⇠ 32⇥ compared to single-
precision filters. We represent a CNN with binary weights by hI,B,A,�i, where B is
a set of binary tensors and A is a set of positive real scalars, such that B = Blk is a
binary filter and ↵ = Alk is an scaling factor and Wlk ⇡ AlkBlk

Estimating binary weights: Without loss of generality we assume W,B are vectors
in Rn, where n = c⇥w⇥ h. To find an optimal estimation for W ⇡ ↵B, we solve the
following optimization:

J(B,↵) = kW � ↵Bk2

↵⇤,B⇤ = argmin
↵,B

J(B,↵) (2)

2 In this paper we assume convolutional filters do not have bias terms

8 Rastegari et al.

-1.4 0.5 … 0.2 2 -1 1 … 1 1

Redundant computations in overlapping areas

=

…

… … …
…

…
…

…

…
… …

…

…

… … …

…
…

c

…

…
… … …

…

…

…
…

…
…

… …

…

…
…

≈

=

=

=

=

(1) Binarizing Weight

(2) Binarizing Input

(4) Convolution with XNOR-Bitcount

…

…

…

… …

Inefficient

Efficient

=

=

(3) Binarizing Input

Fig. 2: This figure illustrates the procedure explained in section 3.2 for approximating a convo-
lution using binary operations.

where 1 is an n-dimensional vector where all of its enteries are 1. 1T can be factored
out from the optimization and the optimal solutions can be achieved from equation 2 as
follow

C
⇤ = sign(Y) = sign(XT) sign(W) = H

⇤T
B

⇤ (9)

Since |Xi|, |Wi| are independent, knowing that Yi = XiWi then,
E [|Yi|] = E [|Xi||Wi|] = E [|Xi|]E [|Wi|] therefore,

�⇤ =

P
|Yi|
n

=

P
|Xi||Wi|

n
⇡

✓
1

n
kXk`1

◆✓
1

n
kWk`1

◆
= �⇤↵⇤ (10)

Binary Convolution: Convolving weight filter W 2 Rc⇥w⇥h (where win � w, hin �
h) with the input tensor I 2 Rc⇥win⇥hin requires computing the scaling factor � for all
possible sub-tensors in I with same size as W. Two of these sub-tensors are illustrated
in figure 2 (second row) by X1 and X2. Due to overlaps between subtensors, comput-
ing � for all possible sub-tensors leads to a large number of redundant computations.
To overcome this redundancy, first, we compute a matrix A =

P
|I:,:,i|
c , which is the

average over absolute values of the elements in the input I across the channel. Then
we convolve A with a 2D filter k 2 Rw⇥h, K = A ⇤ k, where 8ij kij = 1

w⇥h . K
contains scaling factors � for all sub-tensors in the input I. Kij corresponds to � for
a sub-tensor centered at the location ij (across width and height). This procedure is
shown in the third row of figure 2. Once we obtained the scaling factor ↵ for the weight
and � for all sub-tensors in I (denoted by K), we can approximate the convolution
between input I and weight filter W mainly using binary operations:

I ⇤W ⇡ (sign(I)~ sign(W))�K↵ (11)

8 Rastegari et al.

-1.4 0.5 … 0.2 2 -1 1 … 1 1

Redundant computations in overlapping areas

=

…

…

…
 …

…

…

…

…

…

…

…

…

…

…

…
 …

…

…

c

…

…

…
 …

 …

…

…

…

…

…

…

…
 …

…

…

…

≈

=

=

=

=

(1) Binarizing Weight

(2) Binarizing Input

(4) Convolution with XNOR-Bitcount

…

…

…

…
 …

Inefficient

Efficient

=

=

(3) Binarizing Input

Fig. 2: This figure illustrates the procedure explained in section 3.2 for approximating a convo-
lution using binary operations.

where 1 is an n-dimensional vector where all of its enteries are 1. 1T can be factored
out from the optimization and the optimal solutions can be achieved from equation 2 as
follow

C
⇤ = sign(Y) = sign(XT) sign(W) = H

⇤T
B

⇤ (9)

Since |Xi|, |Wi| are independent, knowing that Yi = XiWi then,
E [|Yi|] = E [|Xi||Wi|] = E [|Xi|]E [|Wi|] therefore,

�⇤ =

P
|Yi|
n

=

P
|Xi||Wi|

n
⇡

✓
1

n
kXk`1

◆✓
1

n
kWk`1

◆
= �⇤↵⇤ (10)

Binary Convolution: Convolving weight filter W 2 Rc⇥w⇥h (where win � w, hin �
h) with the input tensor I 2 Rc⇥win⇥hin requires computing the scaling factor � for all
possible sub-tensors in I with same size as W. Two of these sub-tensors are illustrated
in figure 2 (second row) by X1 and X2. Due to overlaps between subtensors, comput-
ing � for all possible sub-tensors leads to a large number of redundant computations.
To overcome this redundancy, first, we compute a matrix A =

P
|I:,:,i|
c , which is the

average over absolute values of the elements in the input I across the channel. Then
we convolve A with a 2D filter k 2 Rw⇥h, K = A ⇤ k, where 8ij kij = 1

w⇥h . K
contains scaling factors � for all sub-tensors in the input I. Kij corresponds to � for
a sub-tensor centered at the location ij (across width and height). This procedure is
shown in the third row of figure 2. Once we obtained the scaling factor ↵ for the weight
and � for all sub-tensors in I (denoted by K), we can approximate the convolution
between input I and weight filter W mainly using binary operations:

I ⇤W ⇡ (sign(I)~ sign(W))�K↵ (11)

R R

XNOR-Net:ImageNetClassificationUsingBinaryConvolutionalNeuralNetworks5

tionofBinaryConnectpropsedbyBinaryNet[11],wherebothweightsandactivations
arebinarized.Ourmethodisdifferentfromtheminthebinarizationmethodandthe
networkstructure.WealsocompareourmethodwithBinaryNetonImageNet,andour
methodoutperformsBinaryNetbylargemargin.[39]arguedthatthenoiseintroduced
byweightbinarizationprovideaformofregularization,whichcouldhelptoimprove
testaccuracy.Thismethodbinarizesweightswhilemaintainingfullprecisionactiva-
tion.[40]proposedfullybinarytrainingandtestinginanarrayofcommitteemachines
withrandomizedinput.[41]retraineapreviouslytrainedneuralnetworkwithbinary
weightsandbinaryinputs.

3BinaryConvolutionalNeuralNetwork

WerepresentanL-layerCNNarchitecturewithatriplethI,W,⇤i.Iisasetoften-
sors,whereeachelementI=Il(l=1,...,L)istheinputtensorforthelthlayerofCNN
(Greencubesinfigure1).Wisasetoftensors,whereeachelementinthissetW=
Wlk(k=1,...,Kl)isthekthweightfilterinthelthlayeroftheCNN.Klisthenumberof
weightfiltersinthelthlayeroftheCNN.⇤representsaconvolutionaloperationwith
IandWasitsoperands2.I2Rc⇥win⇥hin,where(c,win,hin)representschannels,
widthandheightrespectively.W2Rc⇥w⇥h,wherewwin,hhin.Wepropose
twovariationsofbinaryCNN:Binary-weights,wheretheelementsofWarebinary
tensorsandXNOR-Networks,whereelementsofbothIandWarebinarytensors.

3.1Binary-Weight-Networks

InordertoconstrainaconvolutionalneuralnetworkhI,W,⇤itohavebinaryweights,
weestimatethereal-valueweightfilterW2WusingabinaryfilterB2{+1,�1}c⇥w⇥h

andascalingfactor↵2R+suchthatW⇡↵B.Aconvolutionaloperationcanbeap-
priximatedby:

I⇤W⇡(I�B)↵(1)

where,�indicatesaconvolutionwithoutanymultiplication.Sincetheweightvalues
arebinary,wecanimplementtheconvolutionwithadditionsandsubtractions.Thebi-
naryweightfiltersreducememoryusagebyafactorof⇠32⇥comparedtosingle-
precisionfilters.WerepresentaCNNwithbinaryweightsbyhI,B,A,�i,whereBis
asetofbinarytensorsandAisasetofpositiverealscalars,suchthatB=Blkisa
binaryfilterand↵=AlkisanscalingfactorandWlk⇡AlkBlk

Estimatingbinaryweights:WithoutlossofgeneralityweassumeW,Barevectors
inRn,wheren=c⇥w⇥h.TofindanoptimalestimationforW⇡↵B,wesolvethe
followingoptimization:

J(B,↵)=kW�↵Bk
2

↵⇤,B⇤=argmin
↵,B

J(B,↵)(2)

2
Inthispaperweassumeconvolutionalfiltersdonothavebiasterms

8 Rastegari et al.

-1.4 0.5 … 0.2 2 -1 1 … 1 1

Redundant computations in overlapping areas

=

…

… … …
…

…
…

…

…
… …

…

…

… … …

…
…

c

…

…
… … …

…

…

…
…

…
…

… …

…

…
…

≈

=

=

=

=

(1) Binarizing Weight

(2) Binarizing Input

(4) Convolution with XNOR-Bitcount

…

…

…

… …

Inefficient

Efficient

=

=

(3) Binarizing Input

Fig. 2: This figure illustrates the procedure explained in section 3.2 for approximating a convo-
lution using binary operations.

where 1 is an n-dimensional vector where all of its enteries are 1. 1T can be factored
out from the optimization and the optimal solutions can be achieved from equation 2 as
follow

C
⇤ = sign(Y) = sign(XT) sign(W) = H

⇤T
B

⇤ (9)

Since |Xi|, |Wi| are independent, knowing that Yi = XiWi then,
E [|Yi|] = E [|Xi||Wi|] = E [|Xi|]E [|Wi|] therefore,

�⇤ =

P
|Yi|
n

=

P
|Xi||Wi|

n
⇡

✓
1

n
kXk`1

◆✓
1

n
kWk`1

◆
= �⇤↵⇤ (10)

Binary Convolution: Convolving weight filter W 2 Rc⇥w⇥h (where win � w, hin �
h) with the input tensor I 2 Rc⇥win⇥hin requires computing the scaling factor � for all
possible sub-tensors in I with same size as W. Two of these sub-tensors are illustrated
in figure 2 (second row) by X1 and X2. Due to overlaps between subtensors, comput-
ing � for all possible sub-tensors leads to a large number of redundant computations.
To overcome this redundancy, first, we compute a matrix A =

P
|I:,:,i|
c , which is the

average over absolute values of the elements in the input I across the channel. Then
we convolve A with a 2D filter k 2 Rw⇥h, K = A ⇤ k, where 8ij kij = 1

w⇥h . K
contains scaling factors � for all sub-tensors in the input I. Kij corresponds to � for
a sub-tensor centered at the location ij (across width and height). This procedure is
shown in the third row of figure 2. Once we obtained the scaling factor ↵ for the weight
and � for all sub-tensors in I (denoted by K), we can approximate the convolution
between input I and weight filter W mainly using binary operations:

I ⇤W ⇡ (sign(I)~ sign(W))�K↵ (11)

8 Rastegari et al.

-1.4 0.5 … 0.2 2 -1 1 … 1 1

Redundant computations in overlapping areas

=

…

…

…
 …

…

…

…

…

…

…

…

…

…

…

…
 …

…

…

c

…

…

…
 …

 …

…

…

…

…

…

…

…
 …

…

…

…

≈

=

=

=

=

(1) Binarizing Weight

(2) Binarizing Input

(4) Convolution with XNOR-Bitcount

…

…

…

…
 …

Inefficient

Efficient

=

=

(3) Binarizing Input

Fig. 2: This figure illustrates the procedure explained in section 3.2 for approximating a convo-
lution using binary operations.

where 1 is an n-dimensional vector where all of its enteries are 1. 1T can be factored
out from the optimization and the optimal solutions can be achieved from equation 2 as
follow

C
⇤ = sign(Y) = sign(XT) sign(W) = H

⇤T
B

⇤ (9)

Since |Xi|, |Wi| are independent, knowing that Yi = XiWi then,
E [|Yi|] = E [|Xi||Wi|] = E [|Xi|]E [|Wi|] therefore,

�⇤ =

P
|Yi|
n

=

P
|Xi||Wi|

n
⇡

✓
1

n
kXk`1

◆✓
1

n
kWk`1

◆
= �⇤↵⇤ (10)

Binary Convolution: Convolving weight filter W 2 Rc⇥w⇥h (where win � w, hin �
h) with the input tensor I 2 Rc⇥win⇥hin requires computing the scaling factor � for all
possible sub-tensors in I with same size as W. Two of these sub-tensors are illustrated
in figure 2 (second row) by X1 and X2. Due to overlaps between subtensors, comput-
ing � for all possible sub-tensors leads to a large number of redundant computations.
To overcome this redundancy, first, we compute a matrix A =

P
|I:,:,i|
c , which is the

average over absolute values of the elements in the input I across the channel. Then
we convolve A with a 2D filter k 2 Rw⇥h, K = A ⇤ k, where 8ij kij = 1

w⇥h . K
contains scaling factors � for all sub-tensors in the input I. Kij corresponds to � for
a sub-tensor centered at the location ij (across width and height). This procedure is
shown in the third row of figure 2. Once we obtained the scaling factor ↵ for the weight
and � for all sub-tensors in I (denoted by K), we can approximate the convolution
between input I and weight filter W mainly using binary operations:

I ⇤W ⇡ (sign(I)~ sign(W))�K↵ (11)

BR
WB

XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks 5

tion of BinaryConnect propsed by BinaryNet[11], where both weights and activations
are binarized. Our method is different from them in the binarization method and the
network structure. We also compare our method with BinaryNet on ImageNet, and our
method outperforms BinaryNet by large margin.[39] argued that the noise introduced
by weight binarization provide a form of regularization, which could help to improve
test accuracy. This method binarizes weights while maintaining full precision activa-
tion. [40] proposed fully binary training and testing in an array of committee machines
with randomized input. [41] retraine a previously trained neural network with binary
weights and binary inputs.

3 Binary Convolutional Neural Network

We represent an L-layer CNN architecture with a triplet hI,W, ⇤i. I is a set of ten-
sors, where each element I = Il(l=1,...,L) is the input tensor for the lth layer of CNN
(Green cubes in figure 1). W is a set of tensors, where each element in this set W =
Wlk(k=1,...,Kl) is the kth weight filter in the lth layer of the CNN. Kl is the number of
weight filters in the lth layer of the CNN. ⇤ represents a convolutional operation with
I and W as its operands2. I 2 Rc⇥win⇥hin , where (c, win, hin) represents channels,
width and height respectively.W 2 Rc⇥w⇥h, where w  win, h  hin. We propose
two variations of binary CNN: Binary-weights, where the elements of W are binary
tensors and XNOR-Networks, where elements of both I and W are binary tensors.

3.1 Binary-Weight-Networks

In order to constrain a convolutional neural network hI,W, ⇤i to have binary weights,
we estimate the real-value weight filter W 2 W using a binary filter B 2 {+1,�1}c⇥w⇥h

and a scaling factor ↵ 2 R+ such that W ⇡ ↵B. A convolutional operation can be ap-
priximated by:

I ⇤W ⇡ (I�B)↵ (1)

where, � indicates a convolution without any multiplication. Since the weight values
are binary, we can implement the convolution with additions and subtractions. The bi-
nary weight filters reduce memory usage by a factor of ⇠ 32⇥ compared to single-
precision filters. We represent a CNN with binary weights by hI,B,A,�i, where B is
a set of binary tensors and A is a set of positive real scalars, such that B = Blk is a
binary filter and ↵ = Alk is an scaling factor and Wlk ⇡ AlkBlk

Estimating binary weights: Without loss of generality we assume W,B are vectors
in Rn, where n = c⇥w⇥ h. To find an optimal estimation for W ⇡ ↵B, we solve the
following optimization:

J(B,↵) = kW � ↵Bk2

↵⇤,B⇤ = argmin
↵,B

J(B,↵) (2)

2 In this paper we assume convolutional filters do not have bias terms

XNOR-Net:ImageNetClassificationUsingBinaryConvolutionalNeuralNetworks5

tionofBinaryConnectpropsedbyBinaryNet[11],wherebothweightsandactivations
arebinarized.Ourmethodisdifferentfromtheminthebinarizationmethodandthe
networkstructure.WealsocompareourmethodwithBinaryNetonImageNet,andour
methodoutperformsBinaryNetbylargemargin.[39]arguedthatthenoiseintroduced
byweightbinarizationprovideaformofregularization,whichcouldhelptoimprove
testaccuracy.Thismethodbinarizesweightswhilemaintainingfullprecisionactiva-
tion.[40]proposedfullybinarytrainingandtestinginanarrayofcommitteemachines
withrandomizedinput.[41]retraineapreviouslytrainedneuralnetworkwithbinary
weightsandbinaryinputs.

3BinaryConvolutionalNeuralNetwork

WerepresentanL-layerCNNarchitecturewithatriplethI,W,⇤i.Iisasetoften-
sors,whereeachelementI=Il(l=1,...,L)istheinputtensorforthelthlayerofCNN
(Greencubesinfigure1).Wisasetoftensors,whereeachelementinthissetW=
Wlk(k=1,...,Kl)isthekthweightfilterinthelthlayeroftheCNN.Klisthenumberof
weightfiltersinthelthlayeroftheCNN.⇤representsaconvolutionaloperationwith
IandWasitsoperands2.I2Rc⇥win⇥hin,where(c,win,hin)representschannels,
widthandheightrespectively.W2Rc⇥w⇥h,wherewwin,hhin.Wepropose
twovariationsofbinaryCNN:Binary-weights,wheretheelementsofWarebinary
tensorsandXNOR-Networks,whereelementsofbothIandWarebinarytensors.

3.1Binary-Weight-Networks

InordertoconstrainaconvolutionalneuralnetworkhI,W,⇤itohavebinaryweights,
weestimatethereal-valueweightfilterW2WusingabinaryfilterB2{+1,�1}c⇥w⇥h

andascalingfactor↵2R+suchthatW⇡↵B.Aconvolutionaloperationcanbeap-
priximatedby:

I⇤W⇡(I�B)↵(1)

where,�indicatesaconvolutionwithoutanymultiplication.Sincetheweightvalues
arebinary,wecanimplementtheconvolutionwithadditionsandsubtractions.Thebi-
naryweightfiltersreducememoryusagebyafactorof⇠32⇥comparedtosingle-
precisionfilters.WerepresentaCNNwithbinaryweightsbyhI,B,A,�i,whereBis
asetofbinarytensorsandAisasetofpositiverealscalars,suchthatB=Blkisa
binaryfilterand↵=AlkisanscalingfactorandWlk⇡AlkBlk

Estimatingbinaryweights:WithoutlossofgeneralityweassumeW,Barevectors
inRn,wheren=c⇥w⇥h.TofindanoptimalestimationforW⇡↵B,wesolvethe
followingoptimization:

J(B,↵)=kW�↵Bk
2

↵⇤,B⇤=argmin
↵,B

J(B,↵)(2)

2
Inthispaperweassumeconvolutionalfiltersdonothavebiasterms

BR

WB

WB = sign(W)

Quantization Error

WB = sign(W)

_ 0.75

XNOR-Net:ImageNetClassificationUsingBinaryConvolutionalNeuralNetworks5

tionofBinaryConnectpropsedbyBinaryNet[11],wherebothweightsandactivations
arebinarized.Ourmethodisdifferentfromtheminthebinarizationmethodandthe
networkstructure.WealsocompareourmethodwithBinaryNetonImageNet,andour
methodoutperformsBinaryNetbylargemargin.[39]arguedthatthenoiseintroduced
byweightbinarizationprovideaformofregularization,whichcouldhelptoimprove
testaccuracy.Thismethodbinarizesweightswhilemaintainingfullprecisionactiva-
tion.[40]proposedfullybinarytrainingandtestinginanarrayofcommitteemachines
withrandomizedinput.[41]retraineapreviouslytrainedneuralnetworkwithbinary
weightsandbinaryinputs.

3BinaryConvolutionalNeuralNetwork

WerepresentanL-layerCNNarchitecturewithatriplethI,W,⇤i.Iisasetoften-
sors,whereeachelementI=Il(l=1,...,L)istheinputtensorforthelthlayerofCNN
(Greencubesinfigure1).Wisasetoftensors,whereeachelementinthissetW=
Wlk(k=1,...,Kl)isthekthweightfilterinthelthlayeroftheCNN.Klisthenumberof
weightfiltersinthelthlayeroftheCNN.⇤representsaconvolutionaloperationwith
IandWasitsoperands2.I2Rc⇥win⇥hin,where(c,win,hin)representschannels,
widthandheightrespectively.W2Rc⇥w⇥h,wherewwin,hhin.Wepropose
twovariationsofbinaryCNN:Binary-weights,wheretheelementsofWarebinary
tensorsandXNOR-Networks,whereelementsofbothIandWarebinarytensors.

3.1Binary-Weight-Networks

InordertoconstrainaconvolutionalneuralnetworkhI,W,⇤itohavebinaryweights,
weestimatethereal-valueweightfilterW2WusingabinaryfilterB2{+1,�1}c⇥w⇥h

andascalingfactor↵2R+suchthatW⇡↵B.Aconvolutionaloperationcanbeap-
priximatedby:

I⇤W⇡(I�B)↵(1)

where,�indicatesaconvolutionwithoutanymultiplication.Sincetheweightvalues
arebinary,wecanimplementtheconvolutionwithadditionsandsubtractions.Thebi-
naryweightfiltersreducememoryusagebyafactorof⇠32⇥comparedtosingle-
precisionfilters.WerepresentaCNNwithbinaryweightsbyhI,B,A,�i,whereBis
asetofbinarytensorsandAisasetofpositiverealscalars,suchthatB=Blkisa
binaryfilterand↵=AlkisanscalingfactorandWlk⇡AlkBlk

Estimatingbinaryweights:WithoutlossofgeneralityweassumeW,Barevectors
inRn,wheren=c⇥w⇥h.TofindanoptimalestimationforW⇡↵B,wesolvethe
followingoptimization:

J(B,↵)=kW�↵Bk
2

↵⇤,B⇤=argmin
↵,B

J(B,↵)(2)

2
Inthispaperweassumeconvolutionalfiltersdonothavebiasterms

R B

XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks 5

tion of BinaryConnect propsed by BinaryNet[11], where both weights and activations
are binarized. Our method is different from them in the binarization method and the
network structure. We also compare our method with BinaryNet on ImageNet, and our
method outperforms BinaryNet by large margin.[39] argued that the noise introduced
by weight binarization provide a form of regularization, which could help to improve
test accuracy. This method binarizes weights while maintaining full precision activa-
tion. [40] proposed fully binary training and testing in an array of committee machines
with randomized input. [41] retraine a previously trained neural network with binary
weights and binary inputs.

3 Binary Convolutional Neural Network

We represent an L-layer CNN architecture with a triplet hI,W, ⇤i. I is a set of ten-
sors, where each element I = Il(l=1,...,L) is the input tensor for the lth layer of CNN
(Green cubes in figure 1). W is a set of tensors, where each element in this set W =
Wlk(k=1,...,Kl) is the kth weight filter in the lth layer of the CNN. Kl is the number of
weight filters in the lth layer of the CNN. ⇤ represents a convolutional operation with
I and W as its operands2. I 2 Rc⇥win⇥hin , where (c, win, hin) represents channels,
width and height respectively.W 2 Rc⇥w⇥h, where w  win, h  hin. We propose
two variations of binary CNN: Binary-weights, where the elements of W are binary
tensors and XNOR-Networks, where elements of both I and W are binary tensors.

3.1 Binary-Weight-Networks

In order to constrain a convolutional neural network hI,W, ⇤i to have binary weights,
we estimate the real-value weight filter W 2 W using a binary filter B 2 {+1,�1}c⇥w⇥h

and a scaling factor ↵ 2 R+ such that W ⇡ ↵B. A convolutional operation can be ap-
priximated by:

I ⇤W ⇡ (I�B)↵ (1)

where, � indicates a convolution without any multiplication. Since the weight values
are binary, we can implement the convolution with additions and subtractions. The bi-
nary weight filters reduce memory usage by a factor of ⇠ 32⇥ compared to single-
precision filters. We represent a CNN with binary weights by hI,B,A,�i, where B is
a set of binary tensors and A is a set of positive real scalars, such that B = Blk is a
binary filter and ↵ = Alk is an scaling factor and Wlk ⇡ AlkBlk

Estimating binary weights: Without loss of generality we assume W,B are vectors
in Rn, where n = c⇥w⇥ h. To find an optimal estimation for W ⇡ ↵B, we solve the
following optimization:

J(B,↵) = kW � ↵Bk2

↵⇤,B⇤ = argmin
↵,B

J(B,↵) (2)

2 In this paper we assume convolutional filters do not have bias terms

WB

Optimal Scaling Factor

α
∗
,W

B∗

= arg min
WB,α

{||W − αW
B||2}

6 Rastegari et al.

by expanding equation 2, we have

J(B,↵) = ↵2
B

T
B� 2↵WT

B+W
T
W (3)

since B 2 {+1,�1}n, BT
B = n is a constant . WT

W is also a constant because
W is a known variable. Lets define c = W

T
W. Now, we can rewrite the equation 3 as

follow: J(B,↵) = ↵2n � 2↵WT
B + c. The optimal solution for B can be achieved

by maximizing the following constrained optimization: (note that ↵ is a positive value
in equation 2, therefore it can be ignored in the maximization)

B
⇤ = argmax

B

{WT
B} s.t. B 2 {+1,�1}n (4)

This optimization can be solved by assigning Bi = +1 if Wi � 0 and Bi = �1 if
Wi < 0, therefore the optimal solution is B⇤ = sign(W). In order to find the optimal
value for the scaling factor ↵⇤, we take the derivative of J with respect to ↵ and set it
to zero:

↵⇤ =
W

T
B

⇤

n
(5)

By replacing B
⇤ with sign(W)

↵⇤ =
W

T sign(W)

n
=

P
|Wi|
n

=
1

n
kWk`1 (6)

therefore, the optimal estimation of a binary weight filter can be simply achieved by
taking the sign of weight values. The optimal scaling factor is the average of absolute
weight values.

Training Binary-Weights-Networks: Each iteration of training a CNN involves three
steps; forward pass, backward pass and parameters update. To train a CNN with bi-
nary weights (in convolutional layers), we only binarize the weights during the forward
pass and backward propagation. For updating the parameters, we use the high precision
(real-value) weights. Because, in gradient descend the parameter changes are tiny, bina-
rization after updating the parameters ignores these changes and the training objective
can not be improved. [11,38] also employed this strategy to train a binary network.

Algorithm 1 demonstrates our procedure for training a CNN with binary weights.
First, we binarize the weight filters at each layer by computing B and A. Then we call
forward propagation using binary weights and its corresponding scaling factors, where
all the convolutional operations are carried out by equation 1. Then, we call backward
propagation, where the gradients are computed with respect to the estimated weight
filters fW . Lastly, the parameters and the learning rate gets updated by an update rule
e.g.,SGD update with momentum or ADAM [42].

Once the training finished, there is no need to keep the real-value weights. Because,
at inference we only perform forward propagation with the binarized weights.

6 Rastegari et al.

by expanding equation 2, we have

J(B,↵) = ↵2
B

T
B� 2↵WT

B+W
T
W (3)

since B 2 {+1,�1}n, BT
B = n is a constant . WT

W is also a constant because
W is a known variable. Lets define c = W

T
W. Now, we can rewrite the equation 3 as

follow: J(B,↵) = ↵2n � 2↵WT
B + c. The optimal solution for B can be achieved

by maximizing the following constrained optimization: (note that ↵ is a positive value
in equation 2, therefore it can be ignored in the maximization)

B
⇤ = argmax

B

{WT
B} s.t. B 2 {+1,�1}n (4)

This optimization can be solved by assigning Bi = +1 if Wi � 0 and Bi = �1 if
Wi < 0, therefore the optimal solution is B⇤ = sign(W). In order to find the optimal
value for the scaling factor ↵⇤, we take the derivative of J with respect to ↵ and set it
to zero:

↵⇤ =
W

T
B

⇤

n
(5)

By replacing B
⇤ with sign(W)

↵⇤ =
W

T sign(W)

n
=

P
|Wi|
n

=
1

n
kWk`1 (6)

therefore, the optimal estimation of a binary weight filter can be simply achieved by
taking the sign of weight values. The optimal scaling factor is the average of absolute
weight values.

Training Binary-Weights-Networks: Each iteration of training a CNN involves three
steps; forward pass, backward pass and parameters update. To train a CNN with bi-
nary weights (in convolutional layers), we only binarize the weights during the forward
pass and backward propagation. For updating the parameters, we use the high precision
(real-value) weights. Because, in gradient descend the parameter changes are tiny, bina-
rization after updating the parameters ignores these changes and the training objective
can not be improved. [11,38] also employed this strategy to train a binary network.

Algorithm 1 demonstrates our procedure for training a CNN with binary weights.
First, we binarize the weight filters at each layer by computing B and A. Then we call
forward propagation using binary weights and its corresponding scaling factors, where
all the convolutional operations are carried out by equation 1. Then, we call backward
propagation, where the gradients are computed with respect to the estimated weight
filters fW . Lastly, the parameters and the learning rate gets updated by an update rule
e.g.,SGD update with momentum or ADAM [42].

Once the training finished, there is no need to keep the real-value weights. Because,
at inference we only perform forward propagation with the binarized weights.

W
B∗

= sign(W)

XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks 5

tion of BinaryConnect propsed by BinaryNet[11], where both weights and activations
are binarized. Our method is different from them in the binarization method and the
network structure. We also compare our method with BinaryNet on ImageNet, and our
method outperforms BinaryNet by large margin.[39] argued that the noise introduced
by weight binarization provide a form of regularization, which could help to improve
test accuracy. This method binarizes weights while maintaining full precision activa-
tion. [40] proposed fully binary training and testing in an array of committee machines
with randomized input. [41] retraine a previously trained neural network with binary
weights and binary inputs.

3 Binary Convolutional Neural Network

We represent an L-layer CNN architecture with a triplet hI,W, ⇤i. I is a set of ten-
sors, where each element I = Il(l=1,...,L) is the input tensor for the lth layer of CNN
(Green cubes in figure 1). W is a set of tensors, where each element in this set W =
Wlk(k=1,...,Kl) is the kth weight filter in the lth layer of the CNN. Kl is the number of
weight filters in the lth layer of the CNN. ⇤ represents a convolutional operation with
I and W as its operands2. I 2 Rc⇥win⇥hin , where (c, win, hin) represents channels,
width and height respectively.W 2 Rc⇥w⇥h, where w  win, h  hin. We propose
two variations of binary CNN: Binary-weights, where the elements of W are binary
tensors and XNOR-Networks, where elements of both I and W are binary tensors.

3.1 Binary-Weight-Networks

In order to constrain a convolutional neural network hI,W, ⇤i to have binary weights,
we estimate the real-value weight filter W 2 W using a binary filter B 2 {+1,�1}c⇥w⇥h

and a scaling factor ↵ 2 R+ such that W ⇡ ↵B. A convolutional operation can be ap-
priximated by:

I ⇤W ⇡ (I�B)↵ (1)

where, � indicates a convolution without any multiplication. Since the weight values
are binary, we can implement the convolution with additions and subtractions. The bi-
nary weight filters reduce memory usage by a factor of ⇠ 32⇥ compared to single-
precision filters. We represent a CNN with binary weights by hI,B,A,�i, where B is
a set of binary tensors and A is a set of positive real scalars, such that B = Blk is a
binary filter and ↵ = Alk is an scaling factor and Wlk ⇡ AlkBlk

Estimating binary weights: Without loss of generality we assume W,B are vectors
in Rn, where n = c⇥w⇥ h. To find an optimal estimation for W ⇡ ↵B, we solve the
following optimization:

J(B,↵) = kW � ↵Bk2

↵⇤,B⇤ = argmin
↵,B

J(B,↵) (2)

2 In this paper we assume convolutional filters do not have bias terms

XNOR-Net:ImageNetClassificationUsingBinaryConvolutionalNeuralNetworks5

tionofBinaryConnectpropsedbyBinaryNet[11],wherebothweightsandactivations
arebinarized.Ourmethodisdifferentfromtheminthebinarizationmethodandthe
networkstructure.WealsocompareourmethodwithBinaryNetonImageNet,andour
methodoutperformsBinaryNetbylargemargin.[39]arguedthatthenoiseintroduced
byweightbinarizationprovideaformofregularization,whichcouldhelptoimprove
testaccuracy.Thismethodbinarizesweightswhilemaintainingfullprecisionactiva-
tion.[40]proposedfullybinarytrainingandtestinginanarrayofcommitteemachines
withrandomizedinput.[41]retraineapreviouslytrainedneuralnetworkwithbinary
weightsandbinaryinputs.

3BinaryConvolutionalNeuralNetwork

WerepresentanL-layerCNNarchitecturewithatriplethI,W,⇤i.Iisasetoften-
sors,whereeachelementI=Il(l=1,...,L)istheinputtensorforthelthlayerofCNN
(Greencubesinfigure1).Wisasetoftensors,whereeachelementinthissetW=
Wlk(k=1,...,Kl)isthekthweightfilterinthelthlayeroftheCNN.Klisthenumberof
weightfiltersinthelthlayeroftheCNN.⇤representsaconvolutionaloperationwith
IandWasitsoperands2.I2Rc⇥win⇥hin,where(c,win,hin)representschannels,
widthandheightrespectively.W2Rc⇥w⇥h,wherewwin,hhin.Wepropose
twovariationsofbinaryCNN:Binary-weights,wheretheelementsofWarebinary
tensorsandXNOR-Networks,whereelementsofbothIandWarebinarytensors.

3.1Binary-Weight-Networks

InordertoconstrainaconvolutionalneuralnetworkhI,W,⇤itohavebinaryweights,
weestimatethereal-valueweightfilterW2WusingabinaryfilterB2{+1,�1}c⇥w⇥h

andascalingfactor↵2R+suchthatW⇡↵B.Aconvolutionaloperationcanbeap-
priximatedby:

I⇤W⇡(I�B)↵(1)

where,�indicatesaconvolutionwithoutanymultiplication.Sincetheweightvalues
arebinary,wecanimplementtheconvolutionwithadditionsandsubtractions.Thebi-
naryweightfiltersreducememoryusagebyafactorof⇠32⇥comparedtosingle-
precisionfilters.WerepresentaCNNwithbinaryweightsbyhI,B,A,�i,whereBis
asetofbinarytensorsandAisasetofpositiverealscalars,suchthatB=Blkisa
binaryfilterand↵=AlkisanscalingfactorandWlk⇡AlkBlk

Estimatingbinaryweights:WithoutlossofgeneralityweassumeW,Barevectors
inRn,wheren=c⇥w⇥h.TofindanoptimalestimationforW⇡↵B,wesolvethe
followingoptimization:

J(B,↵)=kW�↵Bk
2

↵⇤,B⇤=argmin
↵,B

J(B,↵)(2)

2
Inthispaperweassumeconvolutionalfiltersdonothavebiasterms

14 Rastegari et al.

Binary-Weight-Network
Strategy for computing ↵ top-1 top-5
Using equation 6 53.8 77.0
Using a separate layer 46.2 69.5

(a)

XNOR-Network
Block Structure top-1 top-5
C-B-A-P 30.3 57.5
B-A-C-P 44.2 69.2

(b)
Table 3: In this table, we evaluate two key elements of our approach; computing the optimal
scaling factors and specifying the right order for layers in a block of CNN with binary input.
(a) demonstrates the importance of the scaling factor in training binary-weight-networks and (b)
shows that our way of ordering the layers in a block of CNN is crucial for training XNOR-
Networks. C,B,A,P stands for Convolutional, BatchNormalization, Acive function (here binary
activation), and Pooling respectively.

training algorithm for 80 epochs with batch size of 128. The learning rate starts at 0.1
and we use polynomial rate decay, � = 4.

Test: At inference time, we use a center crop of 224⇥ 224.

4.3 Ablation Studies

There are two key differences between our method and the previous network binariaza-
tion methods; the binararization technique and the block structure in our binary CNN.
For binarization, we find the optimal scaling factors at each iteration of training. For
the block structure, we order the layers in a block in a way that decreases the quantiza-
tion loss for training XNOR-Net. Here, we evaluate the effect of each of these elements
in the performance of the binary networks. Instead of computing the scaling factor ↵
using equation 6, one can consider ↵ as a network parameter. In other words, a layer
after binary convolution multiplies the output of convolution by an scalar parameter for
each filter. This is similar to computing the affine parameters in batch normalization.
Table 3-a compares the performance of a binary network with two ways of computing
the scaling factors. As we mentioned in section 3.2 the typical block structure in CNN is
not suitable for binarization. Table 3-b compares the standard block structure C-B-A-P
(Convolution, Batch Normalization, Activation, Pooling) with our structure B-A-C-P.
(A, is binary activation).

5 Conclusion

We introduce simple, efficient, and accurate binary approximations for neural networks.
We train a neural network that learns to find binary values for weights, which reduces
the size of network by ⇠ 32⇥ and provide the possibility of loading very deep neural
networks into portable devices with limited memory. We also propose an architecture,
XNOR-NET, that uses mostly bitwise operations to approximate convolutions. This
provides ⇠ 58⇥ speed up and enables the possibility of running the inference of state
of the art deep neural network on CPU (rather than GPU) in real-time.

R B

WB

Binary Input and Binary Weight (XNOR-Net)

8 Rastegari et al.

-1.4 0.5 … 0.2 2 -1 1 … 1 1

Redundant computations in overlapping areas

=

…

… … …
…

…
…

…

…
… …

…

…

… … …

…
…

c

…

…
… … …

…

…

…
…

…
…

… …

…

…
…

≈

=

=

=

=

(1) Binarizing Weight

(2) Binarizing Input

(4) Convolution with XNOR-Bitcount

…

…

…

… …

Inefficient

Efficient

=

=

(3) Binarizing Input

Fig. 2: This figure illustrates the procedure explained in section 3.2 for approximating a convo-
lution using binary operations.

where 1 is an n-dimensional vector where all of its enteries are 1. 1T can be factored
out from the optimization and the optimal solutions can be achieved from equation 2 as
follow

C
⇤ = sign(Y) = sign(XT) sign(W) = H

⇤T
B

⇤ (9)

Since |Xi|, |Wi| are independent, knowing that Yi = XiWi then,
E [|Yi|] = E [|Xi||Wi|] = E [|Xi|]E [|Wi|] therefore,

�⇤ =

P
|Yi|
n

=

P
|Xi||Wi|

n
⇡

✓
1

n
kXk`1

◆✓
1

n
kWk`1

◆
= �⇤↵⇤ (10)

Binary Convolution: Convolving weight filter W 2 Rc⇥w⇥h (where win � w, hin �
h) with the input tensor I 2 Rc⇥win⇥hin requires computing the scaling factor � for all
possible sub-tensors in I with same size as W. Two of these sub-tensors are illustrated
in figure 2 (second row) by X1 and X2. Due to overlaps between subtensors, comput-
ing � for all possible sub-tensors leads to a large number of redundant computations.
To overcome this redundancy, first, we compute a matrix A =

P
|I:,:,i|
c , which is the

average over absolute values of the elements in the input I across the channel. Then
we convolve A with a 2D filter k 2 Rw⇥h, K = A ⇤ k, where 8ij kij = 1

w⇥h . K
contains scaling factors � for all sub-tensors in the input I. Kij corresponds to � for
a sub-tensor centered at the location ij (across width and height). This procedure is
shown in the third row of figure 2. Once we obtained the scaling factor ↵ for the weight
and � for all sub-tensors in I (denoted by K), we can approximate the convolution
between input I and weight filter W mainly using binary operations:

I ⇤W ⇡ (sign(I)~ sign(W))�K↵ (11)

XNOR-Net:ImageNetClassificationUsingBinaryConvolutionalNeuralNetworks5

tionofBinaryConnectpropsedbyBinaryNet[11],wherebothweightsandactivations
arebinarized.Ourmethodisdifferentfromtheminthebinarizationmethodandthe
networkstructure.WealsocompareourmethodwithBinaryNetonImageNet,andour
methodoutperformsBinaryNetbylargemargin.[39]arguedthatthenoiseintroduced
byweightbinarizationprovideaformofregularization,whichcouldhelptoimprove
testaccuracy.Thismethodbinarizesweightswhilemaintainingfullprecisionactiva-
tion.[40]proposedfullybinarytrainingandtestinginanarrayofcommitteemachines
withrandomizedinput.[41]retraineapreviouslytrainedneuralnetworkwithbinary
weightsandbinaryinputs.

3BinaryConvolutionalNeuralNetwork

WerepresentanL-layerCNNarchitecturewithatriplethI,W,⇤i.Iisasetoften-
sors,whereeachelementI=Il(l=1,...,L)istheinputtensorforthelthlayerofCNN
(Greencubesinfigure1).Wisasetoftensors,whereeachelementinthissetW=
Wlk(k=1,...,Kl)isthekthweightfilterinthelthlayeroftheCNN.Klisthenumberof
weightfiltersinthelthlayeroftheCNN.⇤representsaconvolutionaloperationwith
IandWasitsoperands2.I2Rc⇥win⇥hin,where(c,win,hin)representschannels,
widthandheightrespectively.W2Rc⇥w⇥h,wherewwin,hhin.Wepropose
twovariationsofbinaryCNN:Binary-weights,wheretheelementsofWarebinary
tensorsandXNOR-Networks,whereelementsofbothIandWarebinarytensors.

3.1Binary-Weight-Networks

InordertoconstrainaconvolutionalneuralnetworkhI,W,⇤itohavebinaryweights,
weestimatethereal-valueweightfilterW2WusingabinaryfilterB2{+1,�1}c⇥w⇥h

andascalingfactor↵2R+suchthatW⇡↵B.Aconvolutionaloperationcanbeap-
priximatedby:

I⇤W⇡(I�B)↵(1)

where,�indicatesaconvolutionwithoutanymultiplication.Sincetheweightvalues
arebinary,wecanimplementtheconvolutionwithadditionsandsubtractions.Thebi-
naryweightfiltersreducememoryusagebyafactorof⇠32⇥comparedtosingle-
precisionfilters.WerepresentaCNNwithbinaryweightsbyhI,B,A,�i,whereBis
asetofbinarytensorsandAisasetofpositiverealscalars,suchthatB=Blkisa
binaryfilterand↵=AlkisanscalingfactorandWlk⇡AlkBlk

Estimatingbinaryweights:WithoutlossofgeneralityweassumeW,Barevectors
inRn,wheren=c⇥w⇥h.TofindanoptimalestimationforW⇡↵B,wesolvethe
followingoptimization:

J(B,↵)=kW�↵Bk
2

↵⇤,B⇤=argmin
↵,B

J(B,↵)(2)

2
Inthispaperweassumeconvolutionalfiltersdonothavebiasterms

8 Rastegari et al.

-1.4 0.5 … 0.2 2 -1 1 … 1 1

Redundant computations in overlapping areas

=

…

… … …
…

…
…

…

…
… …

…

…

… … …

…
…

c

…

…
… … …

…

…

…
…

…
…

… …

…

…
…

≈

=

=

=

=

(1) Binarizing Weight

(2) Binarizing Input

(4) Convolution with XNOR-Bitcount

…

…

…

… …

Inefficient

Efficient

=

=

(3) Binarizing Input

Fig. 2: This figure illustrates the procedure explained in section 3.2 for approximating a convo-
lution using binary operations.

where 1 is an n-dimensional vector where all of its enteries are 1. 1T can be factored
out from the optimization and the optimal solutions can be achieved from equation 2 as
follow

C
⇤ = sign(Y) = sign(XT) sign(W) = H

⇤T
B

⇤ (9)

Since |Xi|, |Wi| are independent, knowing that Yi = XiWi then,
E [|Yi|] = E [|Xi||Wi|] = E [|Xi|]E [|Wi|] therefore,

�⇤ =

P
|Yi|
n

=

P
|Xi||Wi|

n
⇡

✓
1

n
kXk`1

◆✓
1

n
kWk`1

◆
= �⇤↵⇤ (10)

Binary Convolution: Convolving weight filter W 2 Rc⇥w⇥h (where win � w, hin �
h) with the input tensor I 2 Rc⇥win⇥hin requires computing the scaling factor � for all
possible sub-tensors in I with same size as W. Two of these sub-tensors are illustrated
in figure 2 (second row) by X1 and X2. Due to overlaps between subtensors, comput-
ing � for all possible sub-tensors leads to a large number of redundant computations.
To overcome this redundancy, first, we compute a matrix A =

P
|I:,:,i|
c , which is the

average over absolute values of the elements in the input I across the channel. Then
we convolve A with a 2D filter k 2 Rw⇥h, K = A ⇤ k, where 8ij kij = 1

w⇥h . K
contains scaling factors � for all sub-tensors in the input I. Kij corresponds to � for
a sub-tensor centered at the location ij (across width and height). This procedure is
shown in the third row of figure 2. Once we obtained the scaling factor ↵ for the weight
and � for all sub-tensors in I (denoted by K), we can approximate the convolution
between input I and weight filter W mainly using binary operations:

I ⇤W ⇡ (sign(I)~ sign(W))�K↵ (11)

8 Rastegari et al.

-1.4 0.5 … 0.2 2 -1 1 … 1 1

Redundant computations in overlapping areas

=

…

…

…
 …

…

…

…

…

…

…

…

…

…

…

…
 …

…

…

c

…

…

…
 …

 …

…

…

…

…

…

…

…
 …

…

…

…

≈

=

=

=

=

(1) Binarizing Weight

(2) Binarizing Input

(4) Convolution with XNOR-Bitcount

…

…

…

…
 …

Inefficient

Efficient

=

=

(3) Binarizing Input

Fig. 2: This figure illustrates the procedure explained in section 3.2 for approximating a convo-
lution using binary operations.

where 1 is an n-dimensional vector where all of its enteries are 1. 1T can be factored
out from the optimization and the optimal solutions can be achieved from equation 2 as
follow

C
⇤ = sign(Y) = sign(XT) sign(W) = H

⇤T
B

⇤ (9)

Since |Xi|, |Wi| are independent, knowing that Yi = XiWi then,
E [|Yi|] = E [|Xi||Wi|] = E [|Xi|]E [|Wi|] therefore,

�⇤ =

P
|Yi|
n

=

P
|Xi||Wi|

n
⇡

✓
1

n
kXk`1

◆✓
1

n
kWk`1

◆
= �⇤↵⇤ (10)

Binary Convolution: Convolving weight filter W 2 Rc⇥w⇥h (where win � w, hin �
h) with the input tensor I 2 Rc⇥win⇥hin requires computing the scaling factor � for all
possible sub-tensors in I with same size as W. Two of these sub-tensors are illustrated
in figure 2 (second row) by X1 and X2. Due to overlaps between subtensors, comput-
ing � for all possible sub-tensors leads to a large number of redundant computations.
To overcome this redundancy, first, we compute a matrix A =

P
|I:,:,i|
c , which is the

average over absolute values of the elements in the input I across the channel. Then
we convolve A with a 2D filter k 2 Rw⇥h, K = A ⇤ k, where 8ij kij = 1

w⇥h . K
contains scaling factors � for all sub-tensors in the input I. Kij corresponds to � for
a sub-tensor centered at the location ij (across width and height). This procedure is
shown in the third row of figure 2. Once we obtained the scaling factor ↵ for the weight
and � for all sub-tensors in I (denoted by K), we can approximate the convolution
between input I and weight filter W mainly using binary operations:

I ⇤W ⇡ (sign(I)~ sign(W))�K↵ (11)

R

XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks 5

tion of BinaryConnect propsed by BinaryNet[11], where both weights and activations
are binarized. Our method is different from them in the binarization method and the
network structure. We also compare our method with BinaryNet on ImageNet, and our
method outperforms BinaryNet by large margin.[39] argued that the noise introduced
by weight binarization provide a form of regularization, which could help to improve
test accuracy. This method binarizes weights while maintaining full precision activa-
tion. [40] proposed fully binary training and testing in an array of committee machines
with randomized input. [41] retraine a previously trained neural network with binary
weights and binary inputs.

3 Binary Convolutional Neural Network

We represent an L-layer CNN architecture with a triplet hI,W, ⇤i. I is a set of ten-
sors, where each element I = Il(l=1,...,L) is the input tensor for the lth layer of CNN
(Green cubes in figure 1). W is a set of tensors, where each element in this set W =
Wlk(k=1,...,Kl) is the kth weight filter in the lth layer of the CNN. Kl is the number of
weight filters in the lth layer of the CNN. ⇤ represents a convolutional operation with
I and W as its operands2. I 2 Rc⇥win⇥hin , where (c, win, hin) represents channels,
width and height respectively.W 2 Rc⇥w⇥h, where w  win, h  hin. We propose
two variations of binary CNN: Binary-weights, where the elements of W are binary
tensors and XNOR-Networks, where elements of both I and W are binary tensors.

3.1 Binary-Weight-Networks

In order to constrain a convolutional neural network hI,W, ⇤i to have binary weights,
we estimate the real-value weight filter W 2 W using a binary filter B 2 {+1,�1}c⇥w⇥h

and a scaling factor ↵ 2 R+ such that W ⇡ ↵B. A convolutional operation can be ap-
priximated by:

I ⇤W ⇡ (I�B)↵ (1)

where, � indicates a convolution without any multiplication. Since the weight values
are binary, we can implement the convolution with additions and subtractions. The bi-
nary weight filters reduce memory usage by a factor of ⇠ 32⇥ compared to single-
precision filters. We represent a CNN with binary weights by hI,B,A,�i, where B is
a set of binary tensors and A is a set of positive real scalars, such that B = Blk is a
binary filter and ↵ = Alk is an scaling factor and Wlk ⇡ AlkBlk

Estimating binary weights: Without loss of generality we assume W,B are vectors
in Rn, where n = c⇥w⇥ h. To find an optimal estimation for W ⇡ ↵B, we solve the
following optimization:

J(B,↵) = kW � ↵Bk2

↵⇤,B⇤ = argmin
↵,B

J(B,↵) (2)

2 In this paper we assume convolutional filters do not have bias terms

R B
WBXB

B

Myformulaeditor

Mohammad Rastegari

October 2016

1 Introduction
R B ↵ �

1

Myformulaeditor

Mohammad Rastegari

October 2016

1 Introduction
R B ↵ �

1

Y γ Y
B

Y

XNOR-Net:ImageNetClassificationUsingBinaryConvolutionalNeuralNetworks5

tionofBinaryConnectpropsedbyBinaryNet[11],wherebothweightsandactivations
arebinarized.Ourmethodisdifferentfromtheminthebinarizationmethodandthe
networkstructure.WealsocompareourmethodwithBinaryNetonImageNet,andour
methodoutperformsBinaryNetbylargemargin.[39]arguedthatthenoiseintroduced
byweightbinarizationprovideaformofregularization,whichcouldhelptoimprove
testaccuracy.Thismethodbinarizesweightswhilemaintainingfullprecisionactiva-
tion.[40]proposedfullybinarytrainingandtestinginanarrayofcommitteemachines
withrandomizedinput.[41]retraineapreviouslytrainedneuralnetworkwithbinary
weightsandbinaryinputs.

3BinaryConvolutionalNeuralNetwork

WerepresentanL-layerCNNarchitecturewithatriplethI,W,⇤i.Iisasetoften-
sors,whereeachelementI=Il(l=1,...,L)istheinputtensorforthelthlayerofCNN
(Greencubesinfigure1).Wisasetoftensors,whereeachelementinthissetW=
Wlk(k=1,...,Kl)isthekthweightfilterinthelthlayeroftheCNN.Klisthenumberof
weightfiltersinthelthlayeroftheCNN.⇤representsaconvolutionaloperationwith
IandWasitsoperands2.I2Rc⇥win⇥hin,where(c,win,hin)representschannels,
widthandheightrespectively.W2Rc⇥w⇥h,wherewwin,hhin.Wepropose
twovariationsofbinaryCNN:Binary-weights,wheretheelementsofWarebinary
tensorsandXNOR-Networks,whereelementsofbothIandWarebinarytensors.

3.1Binary-Weight-Networks

InordertoconstrainaconvolutionalneuralnetworkhI,W,⇤itohavebinaryweights,
weestimatethereal-valueweightfilterW2WusingabinaryfilterB2{+1,�1}c⇥w⇥h

andascalingfactor↵2R+suchthatW⇡↵B.Aconvolutionaloperationcanbeap-
priximatedby:

I⇤W⇡(I�B)↵(1)

where,�indicatesaconvolutionwithoutanymultiplication.Sincetheweightvalues
arebinary,wecanimplementtheconvolutionwithadditionsandsubtractions.Thebi-
naryweightfiltersreducememoryusagebyafactorof⇠32⇥comparedtosingle-
precisionfilters.WerepresentaCNNwithbinaryweightsbyhI,B,A,�i,whereBis
asetofbinarytensorsandAisasetofpositiverealscalars,suchthatB=Blkisa
binaryfilterand↵=AlkisanscalingfactorandWlk⇡AlkBlk

Estimatingbinaryweights:WithoutlossofgeneralityweassumeW,Barevectors
inRn,wheren=c⇥w⇥h.TofindanoptimalestimationforW⇡↵B,wesolvethe
followingoptimization:

J(B,↵)=kW�↵Bk
2

↵⇤,B⇤=argmin
↵,B

J(B,↵)(2)

2
Inthispaperweassumeconvolutionalfiltersdonothavebiasterms

γ Y
B

γ
∗
=

1

n
∥Y∥ℓ1Y

B∗

= sign(Y)

α
∗
=

1

n

∥W∥
ℓ1 β∗

=
1

n
∥X∥

ℓ1
W

B∗

= sign(W)X
B∗

= sign(X)

Y
B∗

, γ
∗ = arg min

YB,γ

∥Y − γY
B∥2

How to train a CNN with binary filters?

BBR R

sign(X)

≈

XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks 7

Algorithm 1 Training an L-layers CNN with binary weights:

Input: A minibatch of inputs and targets (I,Y), cost function C(Y, Ŷ), current weight Wt and
current learning rate ⌘t.

Output: updated weight Wt+1 and updated learning rate ⌘t+1.
1: Binarizing weight filters:
2: for l = 1 to L do

3: for kth filter in lth layer do

4: Alk = 1
nkW

t
lkk`1

5: Blk = sign(Wt
lk)

6: fWlk = AlkBlk

7: Ŷ = BinaryForward(I,B,A) // standard forward propagation except that convolutions are computed
using equation 1 or 11

8: @C

@fW
= BinaryBackward(@C

@Ŷ
, fW) // standard backward propagation except that gradients are computed

using fW instead of Wt

9: fW = UpdateParameters(fWt, @C

@fW
, ⌘t) // Any update rules (e.g.,SGD or ADAM)

10: ⌘t+1 = UpdateLearningrate(⌘t, t) // Any learning rate scheduling function

3.2 XNOR-Networks

So far, we managed to find binary weights and a scaling factor to estimate the real-
value weights. The inputs to the convolutional layers are still real-value tensors. Now,
we explain how to binarize both weigths and inputs, so convolutions can be imple-
mented efficiently using XNOR and bitcounting operations. This is the key element of
our XNOR-Networks. In order to constrain a convolutional neural network hI,W, ⇤i
to have binary weights and binary inputs, we need to enforce binary operands at each
step of the convolutional operation. A convolution consist of repeating a shift operation
and a dot product. Shift operation moves the weight filter over the input and the dot
product performs element-wise multiplications between the values of the weight filter
and the corresponding part of the input. If we express dot product in terms of binary
operations, convolution can be approximated using binary operations. Dot product be-
tween two binary vectors can be implemented by XNOR-Bitcounting operations [11].
In this section, we explain how to approximate the dot product between two vectors in
Rn by a dot product between two vectors in {+1,�1}n. Next, we demonstrate how to
use this approximation for estimating a convolutional operation between two tensors.

Binary Dot Product: To approximate the dot product between X,W 2 Rn such that
X

T
W ⇡ �HT↵B, where H,B 2 {+1,�1}n and �,↵ 2 R+, we solve the following

optimization:

↵⇤,B⇤,�⇤,H⇤ = argmin
↵,B,�,H

kXT
W � �↵HT

Bk (7)

We define Y 2 Rn such that Yi = XiWi, C 2 {+1,�1}n such that Ci = HiBi and
� 2 R+ such that � = �↵. The equation 7 can be written as:

�⇤,C⇤ = argmin
�,C

k1T
Y � �1T

Ck (8)

Training Binary Weight Networks

Naive Solution:

	���������������
��������������.������������
��������1� �������
���	������

0

10

20

30

40

50

60

70

80
ResNet-50 Top-1 (%) ILSVRC2012

Full Precision Naïve

. W R
R R

. WB
BB

B

Binarization

. BB
B

Person
Dog

. W R
R R

Binarization

Binary Weight Network

. R
R R

Train for binary weights:

Myformulaeditor

Mohammad Rastegari

October 2016

1 Introduction
R B ↵ �

[mathescape, columns=fullflexible, basicstyle=,
]
1. Randomly initialize W
2. For iter = 1 to N
3. Load a random input image X
4. WB = sign(W)
5. ↵ = kWk`1

n

6. Forward pass with ↵,WB

7. Compute loss function C
8. @C

@W = Backward pass with ↵,WB

9. Update W (W = W � @C
@W)

1

Binary Weight Network W

. R
R R. R
R R

Train for binary weights:

Myformulaeditor

Mohammad Rastegari

October 2016

1 Introduction
R B ↵ �

[mathescape, columns=fullflexible, basicstyle=,
]
1. Randomly initialize W
2. For iter = 1 to N
3. Load a random input image X
4. WB = sign(W)
5. ↵ = kWk`1

n

6. Forward pass with ↵,WB

7. Compute loss function C
8. @C

@W = Backward pass with ↵,WB

9. Update W (W = W � @C
@W)

1

Binary Weight Network

.

.
W

WB

R
R R

BB
B

Train for binary weights:

Myformulaeditor

Mohammad Rastegari

October 2016

1 Introduction
R B ↵ �

[mathescape, columns=fullflexible, basicstyle=,
]
1. Randomly initialize W
2. For iter = 1 to N
3. Load a random input image X
4. WB = sign(W)
5. ↵ = kWk`1

n

6. Forward pass with ↵,WB

7. Compute loss function C
8. @C

@W = Backward pass with ↵,WB

9. Update W (W = W � @C
@W)

1

Binary Weight Network W
.

.
WB

R
R R

BB
B

Train for binary weights:

Myformulaeditor

Mohammad Rastegari

October 2016

1 Introduction
R B ↵ �

[mathescape, columns=fullflexible, basicstyle=,
]
1. Randomly initialize W
2. For iter = 1 to N
3. Load a random input image X
4. WB = sign(W)
5. ↵ = kWk`1

n

6. Forward pass with ↵,WB

7. Compute loss function C
8. @C

@W = Backward pass with ↵,WB

9. Update W (W = W � @C
@W)

1

Binary Weight Network

LOSS

.
W

R
R R

.
WB

BB
B

Train for binary weights:

Myformulaeditor

Mohammad Rastegari

October 2016

1 Introduction
R B ↵ �

[mathescape, columns=fullflexible, basicstyle=,
]
1. Randomly initialize W
2. For iter = 1 to N
3. Load a random input image X
4. WB = sign(W)
5. ↵ = kWk`1

n

6. Forward pass with ↵,WB

7. Compute loss function C
8. @C

@W = Backward pass with ↵,WB

9. Update W (W = W � @C
@W)

1

Binary Weight Network

sign(x) à Gx à -1 +1-1

+1
+1

[Hinton et al. 2012]

LOSS.
WB

.
W

R
R R

BB
B

.
Gw

R
R R

Train for binary weights:

Myformulaeditor

Mohammad Rastegari

October 2016

1 Introduction
R B ↵ �

[mathescape, columns=fullflexible, basicstyle=,
]
1. Randomly initialize W
2. For iter = 1 to N
3. Load a random input image X
4. WB = sign(W)
5. ↵ = kWk`1

n

6. Forward pass with ↵,WB

7. Compute loss function C
8. @C

@W = Backward pass with ↵,WB

9. Update W (W = W � @C
@W)

1

Binary Weight Network

W = W - ηGw

. R
R R

. R
R R

. R
R R

Gw

W

Train for binary weights:

Myformulaeditor

Mohammad Rastegari

October 2016

1 Introduction
R B ↵ �

[mathescape, columns=fullflexible, basicstyle=,
]
1. Randomly initialize W
2. For iter = 1 to N
3. Load a random input image X
4. WB = sign(W)
5. ↵ = kWk`1

n

6. Forward pass with ↵,WB

7. Compute loss function C
8. @C

@W = Backward pass with ↵,WB

9. Update W (W = W � @C
@W)

1

Network Structure in XNOR-Networks

sign(x) à
-1

+1

A typical block in CNN

BN
or

m

Ac
tiv

Po
ol

Co
nv

✗Information Loss

✓Multiple Maximums

Max-Pooling

Network Structure in XNOR-Networks

BN
or

m

Ac
tiv

Po
ol

Co
nv

✗Information Loss

✓Multiple Maximums

Network Structure in XNOR-Networks

✓Information Loss
✓Multiple Maximums

BN
or

m

Ac
tiv

BN
or

m

Ac
tiv

Po
ol

Co
nv

0

10

20

30

40

50

60

70

80

ReNet-50 Top-1 (%) ILSVRC2012

0.2

Fu
ll P

re
cis

io
n

Naïv
e

Bin
ar

y W
eig

ht

Bin
ar

y
W

eig
ht &

 In
put

[XNOR-Networks, Rastegari et al, ECCV2016]

BN
or
m
	

Ac
)v
	

Po
ol
	

Co
nv
	

	

Myformulaeditor

Mohammad Rastegari

October 2016

1 Introduction
R B ↵ �

[mathescape, columns=fullflexible, basicstyle=,
]
1. Randomly initialize W
2. For iter = 1 to N
3. Load a random input image X
4. WB = sign(W)
5. ↵ = kWk`1

n

6. Forward pass with ↵,WB

7. Compute loss function C
8. @C

@W = Backward pass with ↵,WB

9. Update W (W = W � @C
@W)

1

BBR R

sign(X)

≈

XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks 7

Algorithm 1 Training an L-layers CNN with binary weights:

Input: A minibatch of inputs and targets (I,Y), cost function C(Y, Ŷ), current weight Wt and
current learning rate ⌘t.

Output: updated weight Wt+1 and updated learning rate ⌘t+1.
1: Binarizing weight filters:
2: for l = 1 to L do

3: for kth filter in lth layer do

4: Alk = 1
nkW

t
lkk`1

5: Blk = sign(Wt
lk)

6: fWlk = AlkBlk

7: Ŷ = BinaryForward(I,B,A) // standard forward propagation except that convolutions are computed
using equation 1 or 11

8: @C

@fW
= BinaryBackward(@C

@Ŷ
, fW) // standard backward propagation except that gradients are computed

using fW instead of Wt

9: fW = UpdateParameters(fWt, @C

@fW
, ⌘t) // Any update rules (e.g.,SGD or ADAM)

10: ⌘t+1 = UpdateLearningrate(⌘t, t) // Any learning rate scheduling function

3.2 XNOR-Networks

So far, we managed to find binary weights and a scaling factor to estimate the real-
value weights. The inputs to the convolutional layers are still real-value tensors. Now,
we explain how to binarize both weigths and inputs, so convolutions can be imple-
mented efficiently using XNOR and bitcounting operations. This is the key element of
our XNOR-Networks. In order to constrain a convolutional neural network hI,W, ⇤i
to have binary weights and binary inputs, we need to enforce binary operands at each
step of the convolutional operation. A convolution consist of repeating a shift operation
and a dot product. Shift operation moves the weight filter over the input and the dot
product performs element-wise multiplications between the values of the weight filter
and the corresponding part of the input. If we express dot product in terms of binary
operations, convolution can be approximated using binary operations. Dot product be-
tween two binary vectors can be implemented by XNOR-Bitcounting operations [11].
In this section, we explain how to approximate the dot product between two vectors in
Rn by a dot product between two vectors in {+1,�1}n. Next, we demonstrate how to
use this approximation for estimating a convolutional operation between two tensors.

Binary Dot Product: To approximate the dot product between X,W 2 Rn such that
X

T
W ⇡ �HT↵B, where H,B 2 {+1,�1}n and �,↵ 2 R+, we solve the following

optimization:

↵⇤,B⇤,�⇤,H⇤ = argmin
↵,B,�,H

kXT
W � �↵HT

Bk (7)

We define Y 2 Rn such that Yi = XiWi, C 2 {+1,�1}n such that Ci = HiBi and
� 2 R+ such that � = �↵. The equation 7 can be written as:

�⇤,C⇤ = argmin
�,C

k1T
Y � �1T

Ck (8)

Raspberry Pi Zero

$5

Xnor.ai IP

Machine Learning

Code Optimization Computer Architecture

ResNet-50 Top-1 (%) ILSVRC2012

0.2

Fu
ll P

re
cis

ion

Naïv
e

Binar
y W

eig
ht

La
bel

Ref
iner

y

XNOR-N
et

0

10

20

30

40

50

60

70

80

State-of-the-Art AI: all the way to Pi Zero

XNOR $5 deep learning machine…
… on Raspberry Pi Zero

… …

Lookup Based CNN
[LCNN Bagherinezhad et al, CVPR 2017]

⊕

Dictionary

W

1

24

33

m

k
kw

kh

⊕

0.2

0.7

0.1

6

13

40

0.3

0.6

0.4

⊕

Dictionary

1

24

33

m

k
kw

kh

⊕

0.2

0.7

0.1

6

13

40

0.3

0.6

0.4

I C
[1 , 24 , 33] [0.2 , 0.7 , 0.1]

[6 , 13 , 40] [0.3 , 0.6 , 0.4]

s

kw kh

s

kw kh

8 Rastegari et al.

-1.4 0.5 … 0.2 2 -1 1 … 1 1

Redundant computations in overlapping areas

=

…

…

…
 …

…

…

…

…

…

…

…

…

…

…

…
 …

…

…

c

…

…

…
 …

 …

…

…

…

…

…

…

…
 …

…

…

…

≈

=

=

=

=

(1) Binarizing Weight

(2) Binarizing Input

(4) Convolution with XNOR-Bitcount

…

…

…

…
 …

Inefficient

Efficient

=

=

(3) Binarizing Input

Fig. 2: This figure illustrates the procedure explained in section 3.2 for approximating a convo-
lution using binary operations.

where 1 is an n-dimensional vector where all of its enteries are 1. 1T can be factored
out from the optimization and the optimal solutions can be achieved from equation 2 as
follow

C
⇤ = sign(Y) = sign(XT) sign(W) = H

⇤T
B

⇤ (9)

Since |Xi|, |Wi| are independent, knowing that Yi = XiWi then,
E [|Yi|] = E [|Xi||Wi|] = E [|Xi|]E [|Wi|] therefore,

�⇤ =

P
|Yi|
n

=

P
|Xi||Wi|

n
⇡

✓
1

n
kXk`1

◆✓
1

n
kWk`1

◆
= �⇤↵⇤ (10)

Binary Convolution: Convolving weight filter W 2 Rc⇥w⇥h (where win � w, hin �
h) with the input tensor I 2 Rc⇥win⇥hin requires computing the scaling factor � for all
possible sub-tensors in I with same size as W. Two of these sub-tensors are illustrated
in figure 2 (second row) by X1 and X2. Due to overlaps between subtensors, comput-
ing � for all possible sub-tensors leads to a large number of redundant computations.
To overcome this redundancy, first, we compute a matrix A =

P
|I:,:,i|
c , which is the

average over absolute values of the elements in the input I across the channel. Then
we convolve A with a 2D filter k 2 Rw⇥h, K = A ⇤ k, where 8ij kij = 1

w⇥h . K
contains scaling factors � for all sub-tensors in the input I. Kij corresponds to � for
a sub-tensor centered at the location ij (across width and height). This procedure is
shown in the third row of figure 2. Once we obtained the scaling factor ↵ for the weight
and � for all sub-tensors in I (denoted by K), we can approximate the convolution
between input I and weight filter W mainly using binary operations:

I ⇤W ⇡ (sign(I)~ sign(W))�K↵ (11)I C
[1 , 24 , 33] [0.2 , 0.7 , 0.1]

[6 , 13 , 40] [0.3 , 0.6 , 0.4]

Dictionary

m

k

8 Rastegari et al.

-1.4 0.5 … 0.2 2 -1 1 … 1 1

Redundant computations in overlapping areas

=

…

…

…
 …

…

…

…

…

…

…

…

…

…

…

…
 …

…

…

c

…

…

…
 …

 …

…

…

…

…

…

…

…
 …

…

…

…

≈

=

=

=

=

(1) Binarizing Weight

(2) Binarizing Input

(4) Convolution with XNOR-Bitcount

…

…

…

…
 …

Inefficient

Efficient

=

=

(3) Binarizing Input

Fig. 2: This figure illustrates the procedure explained in section 3.2 for approximating a convo-
lution using binary operations.

where 1 is an n-dimensional vector where all of its enteries are 1. 1T can be factored
out from the optimization and the optimal solutions can be achieved from equation 2 as
follow

C
⇤ = sign(Y) = sign(XT) sign(W) = H

⇤T
B

⇤ (9)

Since |Xi|, |Wi| are independent, knowing that Yi = XiWi then,
E [|Yi|] = E [|Xi||Wi|] = E [|Xi|]E [|Wi|] therefore,

�⇤ =

P
|Yi|
n

=

P
|Xi||Wi|

n
⇡

✓
1

n
kXk`1

◆✓
1

n
kWk`1

◆
= �⇤↵⇤ (10)

Binary Convolution: Convolving weight filter W 2 Rc⇥w⇥h (where win � w, hin �
h) with the input tensor I 2 Rc⇥win⇥hin requires computing the scaling factor � for all
possible sub-tensors in I with same size as W. Two of these sub-tensors are illustrated
in figure 2 (second row) by X1 and X2. Due to overlaps between subtensors, comput-
ing � for all possible sub-tensors leads to a large number of redundant computations.
To overcome this redundancy, first, we compute a matrix A =

P
|I:,:,i|
c , which is the

average over absolute values of the elements in the input I across the channel. Then
we convolve A with a 2D filter k 2 Rw⇥h, K = A ⇤ k, where 8ij kij = 1

w⇥h . K
contains scaling factors � for all sub-tensors in the input I. Kij corresponds to � for
a sub-tensor centered at the location ij (across width and height). This procedure is
shown in the third row of figure 2. Once we obtained the scaling factor ↵ for the weight
and � for all sub-tensors in I (denoted by K), we can approximate the convolution
between input I and weight filter W mainly using binary operations:

I ⇤W ⇡ (sign(I)~ sign(W))�K↵ (11)

Dictionary

m

k

S

+ + =1 24 33

+ + =

0.2 0.7 0.16 13 40

0.3 0.6 0.4

I C
[1 , 24 , 33] [0.2 , 0.7 , 0.1]

[6 , 13 , 40] [0.3 , 0.6 , 0.4]

⊕

How to train the discrete indexing?!!!!

S

S

∗

P

+ + =

⇔ =

1 24 33

1 24 33

+ + =

0.2 0.7 0.1

I C
[1 , 24 , 33] [0.2 , 0.7 , 0.1]

6 13 40

6 13 40

0.2 0.7 0.1

0.3 0.6 0.4

0.3 0.6 0.4

[6 , 13 , 40] [0.3 , 0.6 , 0.4]

⊕

8 Rastegari et al.

-1.4 0.5 … 0.2 2 -1 1 … 1 1

Redundant computations in overlapping areas

=

…

…

…
 …

…

…

…

…

…

…

…

…

…

…

…
 …

…

…

c

…

…

…
 …

 …

…

…

…

…

…

…

…
 …

…

…

…

≈

=

=

=

=

(1) Binarizing Weight

(2) Binarizing Input

(4) Convolution with XNOR-Bitcount

…

…

…

…
 …

Inefficient

Efficient

=

=

(3) Binarizing Input

Fig. 2: This figure illustrates the procedure explained in section 3.2 for approximating a convo-
lution using binary operations.

where 1 is an n-dimensional vector where all of its enteries are 1. 1T can be factored
out from the optimization and the optimal solutions can be achieved from equation 2 as
follow

C
⇤ = sign(Y) = sign(XT) sign(W) = H

⇤T
B

⇤ (9)

Since |Xi|, |Wi| are independent, knowing that Yi = XiWi then,
E [|Yi|] = E [|Xi||Wi|] = E [|Xi|]E [|Wi|] therefore,

�⇤ =

P
|Yi|
n

=

P
|Xi||Wi|

n
⇡

✓
1

n
kXk`1

◆✓
1

n
kWk`1

◆
= �⇤↵⇤ (10)

Binary Convolution: Convolving weight filter W 2 Rc⇥w⇥h (where win � w, hin �
h) with the input tensor I 2 Rc⇥win⇥hin requires computing the scaling factor � for all
possible sub-tensors in I with same size as W. Two of these sub-tensors are illustrated
in figure 2 (second row) by X1 and X2. Due to overlaps between subtensors, comput-
ing � for all possible sub-tensors leads to a large number of redundant computations.
To overcome this redundancy, first, we compute a matrix A =

P
|I:,:,i|
c , which is the

average over absolute values of the elements in the input I across the channel. Then
we convolve A with a 2D filter k 2 Rw⇥h, K = A ⇤ k, where 8ij kij = 1

w⇥h . K
contains scaling factors � for all sub-tensors in the input I. Kij corresponds to � for
a sub-tensor centered at the location ij (across width and height). This procedure is
shown in the third row of figure 2. Once we obtained the scaling factor ↵ for the weight
and � for all sub-tensors in I (denoted by K), we can approximate the convolution
between input I and weight filter W mainly using binary operations:

I ⇤W ⇡ (sign(I)~ sign(W))�K↵ (11)

Dictionary

m

k

S

∗

P

AlexNet

Model speedu
p Top-1 Top-5

CNN 1.0x 56.6 80.2
XNOR-
Net[2] 8.0x 44.2 69.2

LCNN-fast 37.6x 44.3 68.7
LCNN-

accurate 3.2x 55.1 78.1

ResNet-18

Model speedu
p Top-1 Top-5

CNN 1.0x 69.3 90.0
XNOR-
Net[2] 10.6x 51.2 73.2

LCNN-fast 29.2x 51.8 76.8
LCNN-

accurate 5x 62.2 84.6

ImageNet Classification Result

How to improve the accuracy of
compact models?

Components in a Supervised Learning System

• Data
• ImageNet, MSCOCO, SUN, …
• Data Augmentations

• Model
• SVM, CNN
• Optimization Techniques (SGD,ADAM, RMSProp,…)

• Label
• ?!!

Challenges with current labeling paradigm

Persian Cat
ball

• Incomplete

Challenges with current labeling paradigm

• Random cropping

Challenges with current labeling paradigm

• Inconsistent

Dough

Butternut Squash

Challenges with current labeling paradigm

• Inconsistent

Dough

Butternut Squash

Challenges with current labeling paradigm

chrysanthemum dog

silky terrier

Car mirror

Sa
m

e
am

ou
nt

 o
f p

en
al

iza
tio

n

• Taxonomy dependency

Labels should be:

• Soft

• Informative

• Dynamic

Cat à 80%
Ball à 20%

Dog --> 60%
Cat --> 30%
Bear --> 10%

Dog --> 60%
Cat --> 10%
Bear --> 30%

Cat à 1 %
Ball à 99%

Ground-
truth Label

Data

burrito burrito

plate

eggnog

burrito

plate

restaurant

Refinery

Top-1: 57.93 Top-1: 59.97 Top-1: 60.87 Top-1: 61.22

burrito

plate

restaurant

Refined Label

Data
Refinery

Refined Label

Data
Refinery

Refined Label

Data
Model

Label Refinery
[Bagherinezhad et al, 2018]

Ground-
truth Label

Data

burrito burrito

plate

eggnog

burrito

plate

restaurant

Refinery

Top-1: 57.93 Top-1: 59.97 Top-1: 60.87 Top-1: 61.22

burrito

plate

restaurant

Refined Label

Data
Refinery

Refined Label

Data
Refinery

Refined Label

Data
Model

Label Refinery
[Bagherinezhad et al, 2018]

Ground-
truth Label

Data

burrito burrito

plate

eggnog

burrito

plate

restaurant

Refinery

Top-1: 57.93 Top-1: 59.97 Top-1: 60.87 Top-1: 61.22

burrito

plate

restaurant

Refined Label

Data
Refinery

Refined Label

Data
Refinery

Refined Label

Data
Model

Label Refinery
[Bagherinezhad et al, 2018]

RefineryRandom Noise
Image Probabilities

CNN KL-Loss

RefineryAdversarial Jittered
Image Probabilities

CNN KL-Loss

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

ECCV
#2228

ECCV
#2228

Label Refinery 9

Model
Paper Number Our Impl. Label Refinery

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

AlexNet [8] 59.3 81.8 57.93 79.41 66.28†
86.13†

MobileNet [28] 70.6 N/A 68.53 88.14 73.39 91.07
MobileNet0.75 [28] 68.4 N/A 65.93 86.28 70.92 89.68
MobileNet0.5 [28] 63.7 N/A 63.03 84.55 66.66†

87.07†

MobileNet0.25 [28] 50.6 N/A 50.65 74.42 54.62†
77.92†

ResNet-50 [5] N/A N/A 75.7 92.81 76.5 93.12
ResNet-34 [5] N/A N/A 73.39 91.32 75.06 92.35
ResNet-18 [5] N/A N/A 69.7 89.26 72.52 90.73
ResNetXnor-50 [32] N/A N/A 63.1 83.61 70.34 89.18
VGG16 [6] 73 91.2 70.1 88.54 75 92.22
VGG19 [6] 72.7 91 71.39 89.44 75.46 92.52
Darknet19 [33] 72.9 91.2 70.6 89.13 74.47 91.94

Table 2: Using refined labels improves the accuracy of a variety of network architectures
to new state-of-the-art accuracies. The Label Refinery used in these experiments is a
ResNet-50 model trained with weight decay.
† These models can be further improved by training with adversarial inputs (Table 3).

from cross-architecture refinement. VGG networks have a very high capacity and
they overfit to the training set more than the other networks. Providing more ac-
curate training set labels helps them to fit to more accurate signals and perform
better at validation time. Darknet19, the backbone architecture of YOLOv2 [33],
improves almost 4 points when trained with refined labels.

Adversarial Inputs: As discussed in Section 3.1 we can adversarially aug-
ment our training set with patches on which the refinery network and the trained
model disagree. We used a gradient step of ⌘ = 1, as defined in Equation 3 to
augment the dataset. We batch each adversarially modified crop with the origi-
nal crop during training. This helps to ensure the trained model does not drift
too far from natural images. We observe in Table 3 that smaller models further
improve beyond the improvements from using a Label Refinery alone.

4.1 Analysis

We explore the characteristics of models trained using a Label Refinery. We
first explore how much of the improvement comes from the dynamic labeling
of the image crops and how much of it comes from softening the target labels.
We then explore the overfitting characteristics of models trained with a Label

Model
GT Labels Label Refinery Adversarial

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

AlexNet 57.93 79.41 66.28 86.13 67.2 86.92
MobileNet0.5 63.03 84.55 66.66 87.07 67.33 87.4
MobileNet0.25 50.65 74.42 54.62 77.92 55.59 78.58

Table 3: Smaller models are further improved by training over adversarial inputs. The
Adversarial Label Refinery is ResNet-50.

Low Power AI

S5L

• Very low power (~2x lower than Pi Zero)
• Standard AI model for object detection
• 1 fps

• XNOR AI Model for object detection
• 26 fps

XNOR model on DeepLens

Full Precision Network XNOR.AI Bilinear

Private and confidential

Thank you !!!
Learn more
www.xnor.ai

http://www.apple.com

Private & confidential

Competitive analysis: XNOR-Net models Vs SqueezeNet

Benchmarked results
XNOR.AI solutions are 2.5X faster than squeeze net at the same accuracy on a core i7 770K 4.2GHz Intel CPU

