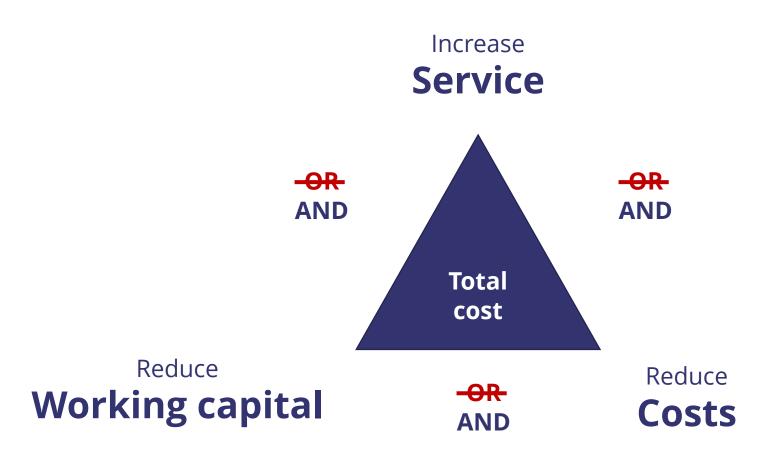


Leaders in Life Sciences

October 30-31, 2025

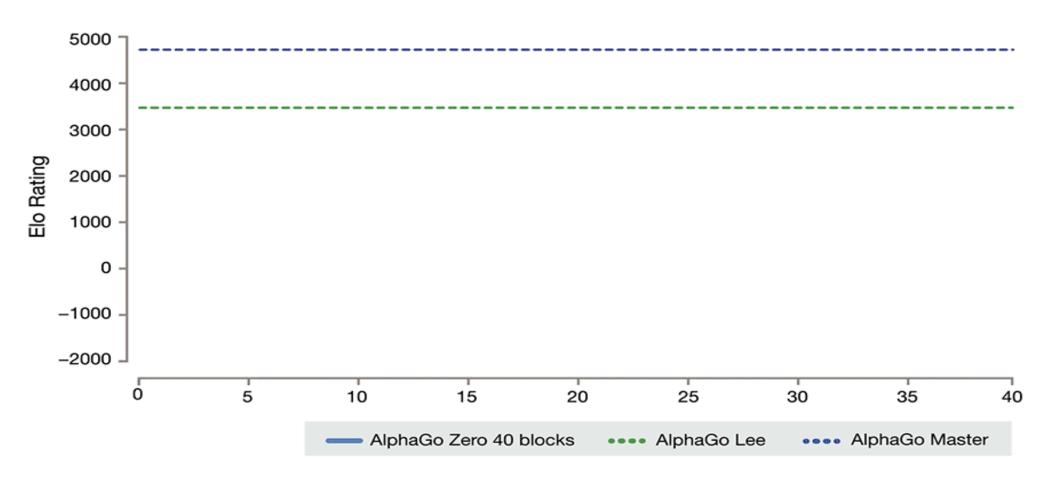
Cambridge


Community & Innovation Symposium

Context

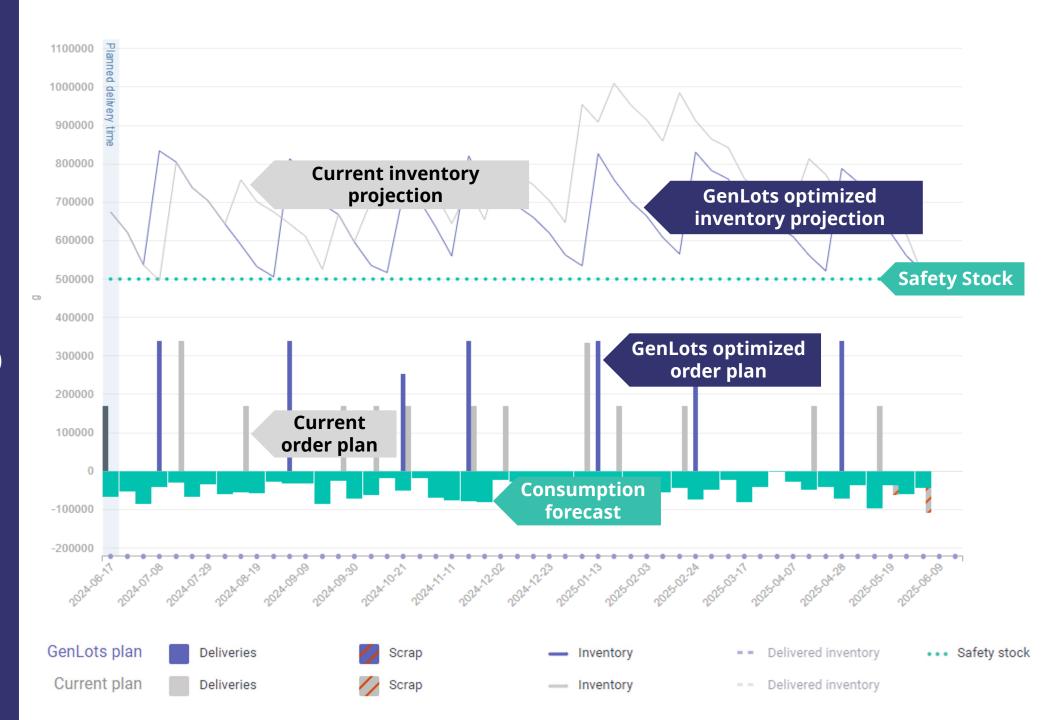
The supply chain triangle

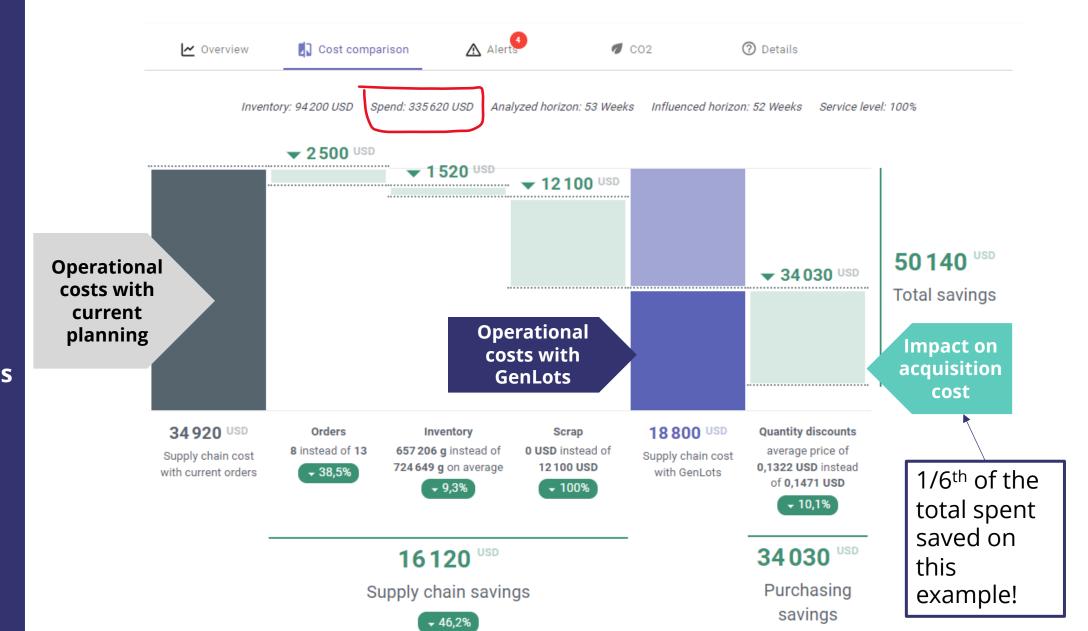
How GenLots Works


- GenLots minimizes the **Total Cost of Ownership (TCO)** for the company, **solving** the triangle shown before.
- GenLots optimizes across 5 dimensions:
 - **Acquisition cost** of the material (with scale prices if any)
 - Cost of getting the material in the warehouse at each order ("order cost")
 - **Carrying cost**, i.e. cost of storage and cost of capital
 - Material waste, in case some material has to be thrown / unused
 - Risk limitation: avoid **stockouts**

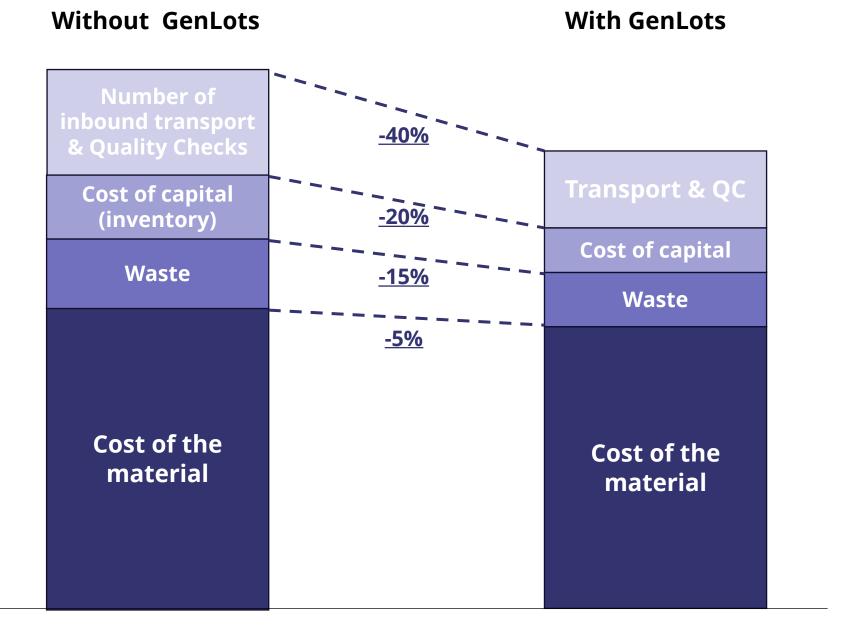
EXAMPLE OF REINFORCEMENT LEARNING

AlphaGo Zero outperforms any Go opponent in 40 days - including supervised learning-models


AlphaGo Zero does not need prior training data



...Uber's dynamic pricing system (surges) uses this type of AI as well



Example: 2 different (but similar looking) ways of ordering....

...lead to radically different results Total Cost of Ownership (TCO) of a Material Over 1 year

^{*}Source for the averages: 19 implementations, one-offs & pilots How much did you save with GenLots

Example in Life Science

Biotech site in Switzerland

Chemical & active ingredients

5% less inventory

47% less deliveries

2% less material waste

5% lower **price** (unlocked discounts)

Planning **interface**

Easy Implementation

Process stays the same for users

No change management required

INPUT (CLIENT ERP)

DEMAND SIGNAL

FIXED / EXISTING PURCHASES FOR THAT MATERIAL

MATERIAL PARAMETERS

Safety: Coverage days, Safety stock & days, etc.

Any additional parameters: GR processing time, batches expiration dates, phase-in/phaseouts, etc.

Cost factors: Transport, working capital, quality control, quantity discounts, etc.

OrderAl

GenLots SaaS in the cloud

Standard **APIs**

OUTPUT (CLIENT ERP)

REPLACE PURCHASE REQUESTS

... and/or Planned Order, PO Items, etc.

Validate Business We can estimate the savings potential as well as investment with around **5 questions**

How to get

there?

Validate Technical Feasibility

1 hour with your technical team should give us an idea of effort & potential timelines

SAP Alignment

- Available on **SAP Store**
 - Available on BTP
- Highly complementary with IBP

Outcome

- Validated Business Case and KPIs
- Implementation plan & timeline
- Signature-ready contract

Available on **SAP Store**

Case

SAP Industry cloud

Appendix – Policy Advisor

What else can we do by optimizing for Total Cost?simulations and master data

optimization

1. Formulate a scenario

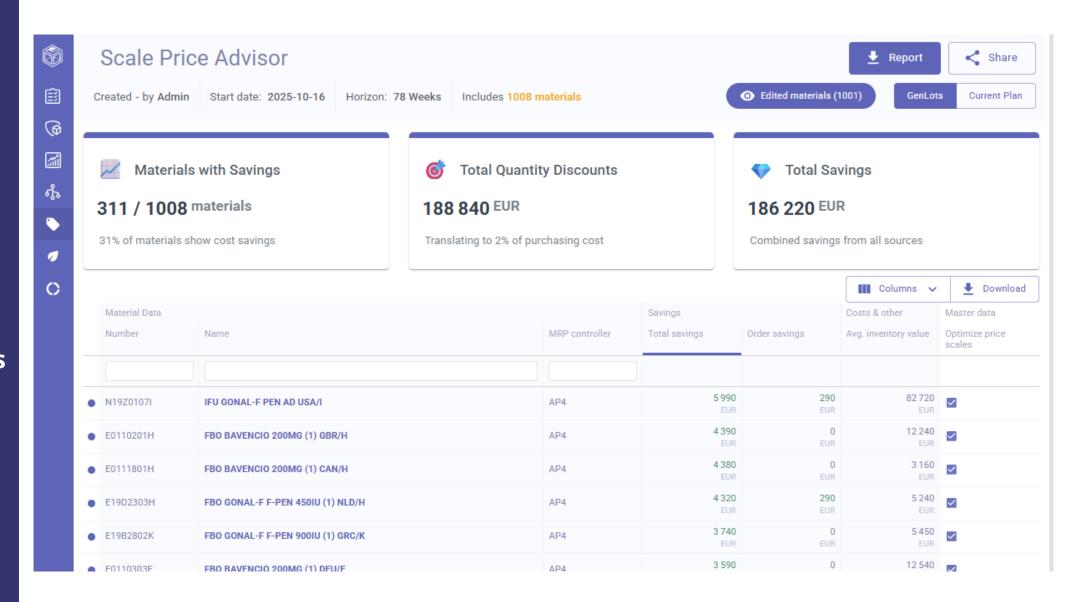
2. <u>Verify the impact immediately</u>

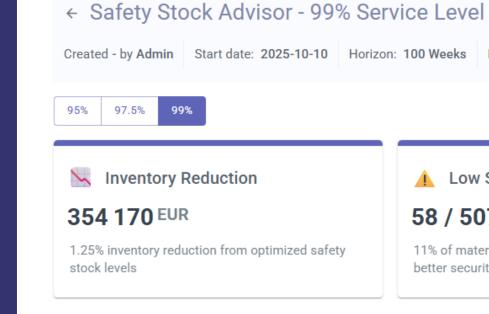
3. <u>Implement</u>

What happens if I...

...set a safety stock at 99% service level?
Inventory policy

...half the MOQs?
Procurement
parameters

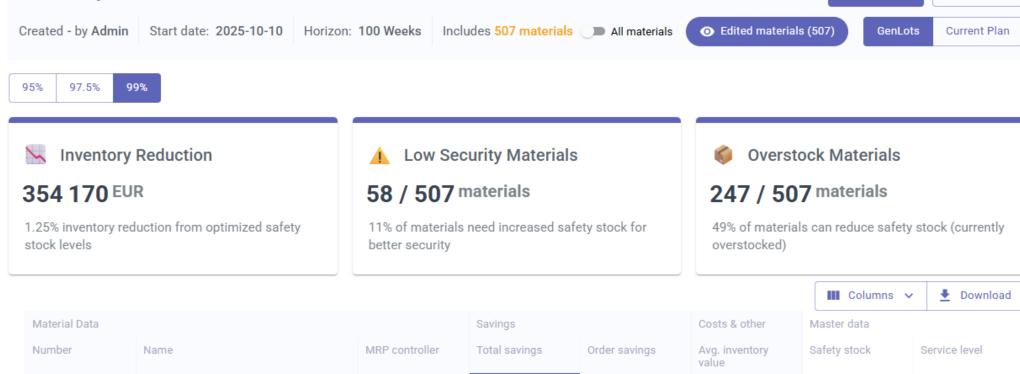

...want to keep the Inventory below 1 M € for this set of materials


Financial objectives

 ← -50% MOQ & rounding value 						
Created 2023-01-12 by Admin	Start date: 2022-06-20 Horizon: 53	Weeks Includes 28 materials				
	Current Plan	Simulation				
Average Inventory Value	5154150 USD	▼ 21 % 4030 250 USD				
Number of orders	319	▼ 36,4 % 203				
Costs						
Supply Chain cost	2102780 USD	▼ 47,6 % 1102890 USD				
Order Cost	434 030 USD	▼ 31,3 % 298110 USD				
Inventory cost	856 160 USD	▼ 22,1 % 666 920 USD				
Scrap cost	812 590 USD	▼ 83 % 137 860 USD				
Purchasing cost	24122220 USD	▼ 13 % 20 940 880 USD				

- Manually: share reports with stakeholders / S&OP meets
- Automatically: continuously update parameters in the system

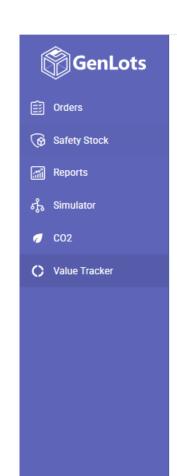
Aligning 100% **Order Planning And Scale Prices**



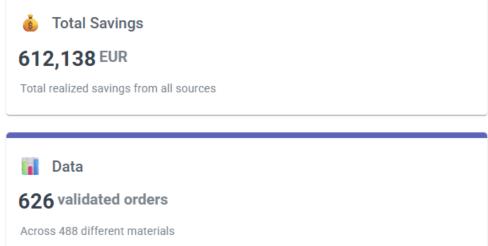
Automate

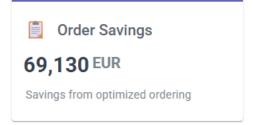
Safety Stock

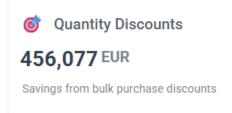
Updates

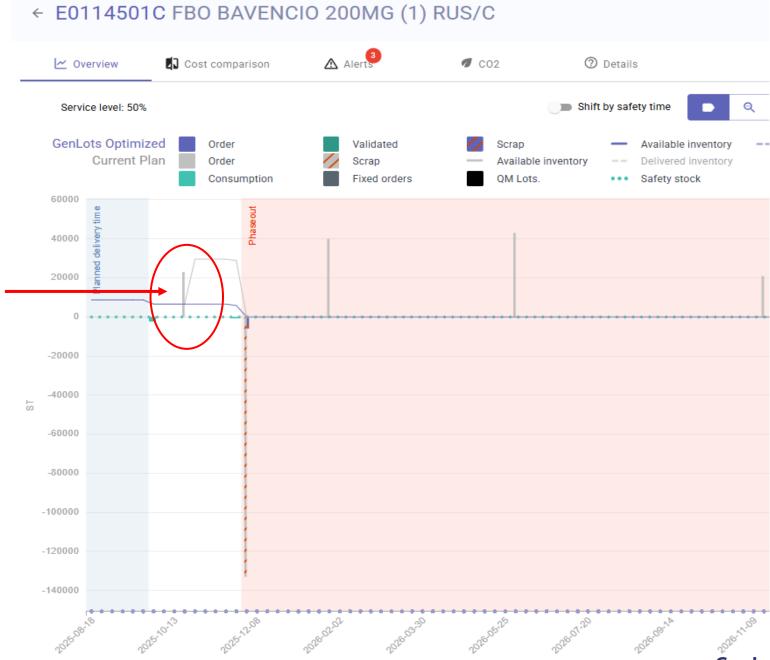


Share


Report


Easily track value generated by GenLots





Automatically account for phase-outs

Avoiding **this** order results in EUR 8'942 savings

Difference with IBP

Task

Goal

GenLots within SAP ecosystem: a value enabler for IBP and other upstream optimisation

Demand Planning

Understanding future demand

Sales & Operations Planning (S&OP)

Balancing sales and production activities

Production

Planning and executing production

Replenishment

Computing material needs and purchasing patterns. *We refer here to **material flow** not finished goods

Logistics

Monitoring and executing transport of goods across various locations

Inventory management

Ensuring company has the right amount of goods to meet demand and minimize holding costs *We refer here to **finished goods inventory** ready to be shipped

IBP modules

IBP for Demand

Accurate forecasting

IBP for S&OP

Cross company business plan

& Supply

Synchronized demand and supply considering resource capacity

IBP for Response IBP for Replenishment

Demand Driven MRP approach (pull) in which customer orders trigger material replenishment

alternative: Classic ERP MRP

Breakdown of production plans into future material needs (push)

Supply chain control tower

Visibility throughout the network, also using other SAP functionalities

IBP for inventory

Optimal inventory levels to satisfy customer service across all the network

NA

GenLots provides optimal levels for procurement parameters, like scale prices, or safety stock for inbound materials NA

Operational purchasing

GenLots computes optimal purchasing patterns once material needs are given with superior performance.

It complements the ERP and IBP, leveraging improved data quality.

GenLots reduces amount of transport required for a similar total output on a given production horizon

NA

About GenLots

Founding team - Headquartered in Lausanne, Switzerland

Arnaud Managed a VOD startup with B2B clients and 40k subscribers

Simon Developed the algorithm Experienced digital transition engineer **EPFL**

ETH zürich

GenLots at a glance

Key investors

Prof. Dr. Stephan Wagner Director Supply Chain MBA ETH Zürich (Top10 world), chair of Logistics department **ETH** zürich

Fly Ventures Berlin

ACE & Company Geneva

PLUGANDPLAY

Plug and Play San Francisco

Accolades

Venture leaders Technology

Mass Challenge & H- Farm

Seal of Excellence European Commission

Proof of Value & pilot

How to

	GenLots Proof of Value (POV)	GenLots Pilot
Concept	Test 50 materials offlineData exchanged by Excel	Implementation followed by a 6 to 8 weeks live run
Benefit	Scan of your Operational Purchasing performance	 Detailed performance review throughout all material categories (no cap on number of materials) and optionally across sites
		 Start optimizing already during this phase
Effort	 2-man days from user to prepare and export the data Meeting with stakeholders to present the 	 2-5 man days for IT department to validate the architecture and to configure our integration with SAP
	report • X2 if we do "two rounds" (edit master data, add granularity, etc.)	 1-5 man days of project activities with a material planner (key user) for validation and testing and to a lesser degree a financial to validate the cost structure
Next step	Live integration	 No additional integration needed unless it's for another instance
		Scaling up in due time
Investment	Time & materials @ CHF 200/hour. Estimate: CHF 5 - 7 K	Time & materials @ CHF 200/hour + pro-rata of the licensing fee for the live run Estimate: CHF 30 -50 K

- Ideally 20-50 materials
- There is **no limit** on the number, but experience has shown that discussing **in depth** fewer, representative materials is efficient

- **Proof of Value**
 - 1. Material scope

- **Representatives** from all categories (A, B, and C / X, Y and Z) is better to get a full picture of where the biggest potential lies
- If you have materials with **scale prices**, please include some
- We like a challenge. So if some materials had stockouts, scrap or you suspect wrongly set safety stocks, lead times etc. - bring them on!

- **Exceptions**
- Materials to avoid: Reorder Point materials which have no dependent requirements in the system
- Materials you know have a special planning schedule (i.e. one train per month from Rotterdam)

Proof of Value

2. Define Cost

	Typical values	Value for Pharma
Opportunity cost of capital	7.4-10%	7%
Storage and storage surface	2-4.2%	1.5%
Deterioration & Loss	4-6.4%	4%
Insurance	1%	0%
Material handling	1%	1%
Tax	0-2%	0%
Total carrying rate	15.4 - 24.6% 17% default	13.5%

	Typical values	Value for Pharma
Time place to order	100€	150€
Warehouse intake	150€	200 €
Transportation & CO2	TBD	TBD €
Internal quality control	300€	1000€
External quality control	0€	700 €
Cost of sample	0€	0€
Total cost per order	550 €	2050 €

The first estimate can be very rough. Later on we can still split by category and go deeper into the cost per order.

Proof of Value

-

3. Data requirements

Parameters needed

Price of the material

Safety stock in units

Order quantity

Rounding value

Supplier lead time

Shelf Life

Goods Receipts Processing time

Parameters needed

Forecasted material requirements

Orders currently planned

SAP Table

MBEW

MARC

MARC

MARC

MARC

MARA

MARC

SAP field

STPRS

EISBE

BSTMI, BSTFE, BSTMA

BSTRF

PLIFZ

MHDHB

WEBAZ

SAP transaction

MD04

MD04

1. Implementation ~6 weeks

2. User Testing & write-back 1 month

2. Roll out
 < 2 weeks</pre>

Pilot -High level approach

Objective

Interface ready for testing on full scope

- Validate Business Case
 - Validate implementation Roll-out to production

Business stream

- Select scope
- Define cost structure & success metrics
- Get planner feedback
- Track success metrics

Planner training

Technical Stream

- Define and validate communication schema and data structure
- Develop & test read only interface
- Incorporate test results
- Define and implement write-back of orders into ERP

Ideally: all is already done

SAP ecosystem

We integrate with existing Interfaces from SAP ECC, S4 **HANA** or any other ERP

INPUT (CLIENT ERP)

DEMAND SIGNAL

DepReq, IndReq, CusOrd, etc

FOR THAT MATERIAL

FIXED / EXISTING PURCHASES

Standard **APIs** MATERIAL PARAMETERS

Cost factors: Transport, working capital, quality control, quantity discounts, etc.


(MOST ARE OPTIONAL)

Safety: Coverage days, Safety stock & days, etc.

Any additional parameters: GR processing time, batches expiration dates, phase-in/phaseouts, etc.

GenLots Order Al

SaaS in the cloud

Standard

OUTPUT (CLIENT ERP)

OrderAl **PURCHASE REQUESTS**

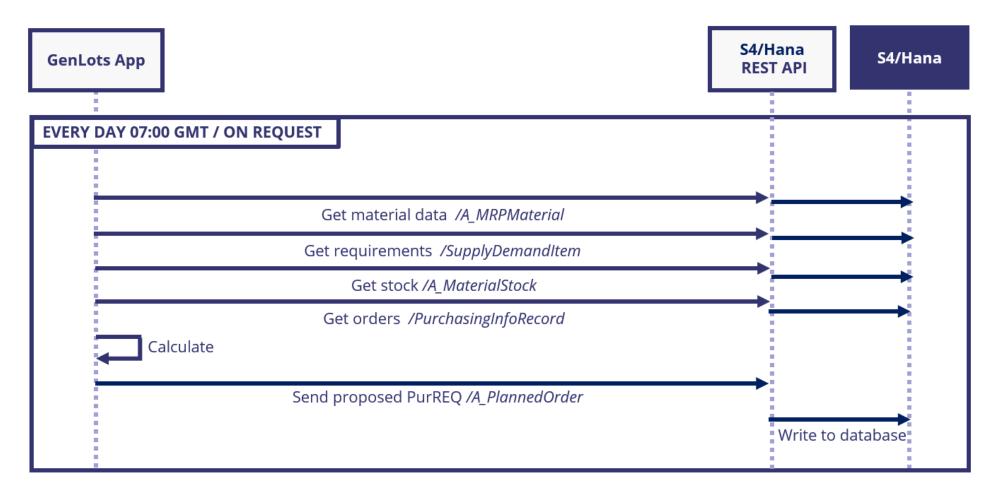
... and/or Planned Order, PO Items, etc.

OPTIONAL: OrderUI GENLOTS USER INTERFACE

Graphs, cost awareness and simulations, future inventory in volume, reports

OPTIONAL: PolicyAdvisor

Assessing the impact of changes in inputs (like service levels, safety stock, rounding values, etc.) on the planning and on the costs



APIs

Example integration – sequence diagram

Task

Goal

GenLots within SAP ecosystem: a value enabler for IBP and other upstream optimisation

Demand Planning

Understanding future demand

Sales & Operations Planning (S&OP)

Balancing sales and production activities

Production

Planning and executing production

Replenishment

Computing material needs and purchasing patterns. *We refer here to **material flow** not finished goods

Logistics

Monitoring and executing transport of goods across various locations

Inventory management

Ensuring company has the right amount of goods to meet demand and minimize holding costs *We refer here to **finished goods inventory** ready to be shipped

IBP modules

IBP for Demand

Accurate forecasting

IBP for S&OP

Cross company business plan

& Supply

Synchronized demand and supply considering resource capacity

IBP for Response IBP for Replenishment

Demand Driven MRP approach (pull) in which customer orders trigger material replenishment

alternative: Classic ERP MRP

Breakdown of production plans into future material needs (push)

Supply chain control tower

Visibility throughout the network, also using other SAP functionalities

IBP for inventory

Optimal inventory levels to satisfy customer service across all the network

NA

GenLots provides optimal levels for procurement parameters, like scale prices, or safety stock for inbound materials NA

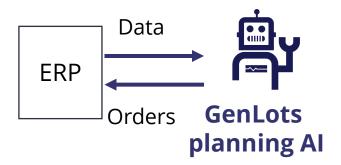
Operational purchasing

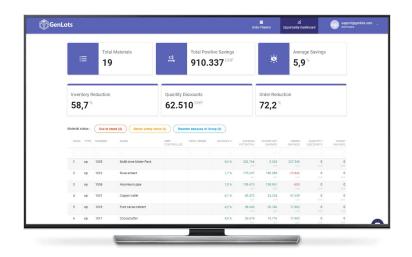
GenLots computes optimal purchasing patterns once material needs are given with superior performance.

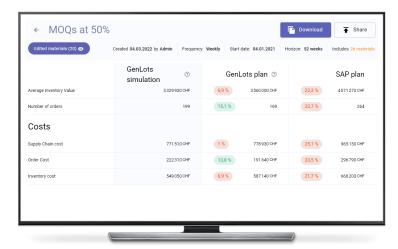
It complements the ERP and IBP, leveraging improved data quality.

GenLots reduces amount of transport required for a similar total output on a given production horizon

NA


Our packages





Our packages

GenLots Order Al

Replace ERP orders with optimized GenLots orders, automatically

+ GenLots Order UI

Make planning complexity easy and visualize scrap, inventory and service levels

+ GenLots Policy Advisor

Use the full potential available to reparametrize master data, safety stock, MOQs, quantity discounts...

Investment after activation

Order Al	Order UI	Policy Advisor
 API calculating optimal order quantities Approval of orders from within ERP with current process Depending on material, they can be approved automatically 	 Planner companion with graphical interface Exception handling (scrap, phaseouts, etc.) Inventory visualisation to handle constrained warehousing space Individual simulations 	 Safety Stock recommendations, optionally written back into ERP Simulations on Procurement parameters (MOQ, Scale prices, Safety times) Management by objectives (inventory vs. orders priority) Custom automatizations possible
 Per instance/BU/Factory 50k below 5 million of inbound inventory 75k 5-15 million inbound inventory 120k above 15 million of inbound inventory 200k above 100 million of inventory 	40k/ BU/ year	 40k/BU/year + 20k for automatic write-back Potential additional Implementation work

Discount card				
150,000	0%			
200,000	5%			
250,000	10%			
300,000	15%			
400,000	20%			
500,000	25%			

Example 1:

- 2 sites optimising 9 millions of inbound inventory each = 2 * 75K = 150 K for order AI
- 2* 40K = 80 K yearly for Order UI
- 2* 40K = 80 K yearly for Policy Advisor
- Total 310 K \rightarrow 15% of discount applies
- 265 K yearly

Example 2:

1 site optimising 4 millions of inbound inventory with Order Al only: 50 K yearly

→ Expected 5 -10 X ROI based on existing implementations (slide 11)

*All prices CHF

2-slider for sharing

Al-Powered efficiency with Every Order

BRIEF

GenLots optimizes quantity and timing of material & component orders through its unique Al.

This reduces the total cost in the trade-off triangle between inventory, order costs and service level.

BUSINESS PROBLEM

Manufacturing companies face challenges in operational purchasing which is still relying on Excel macros, an MRP (Material Requirements Planning) from the 90ties and individual knowledge.

Current optimization algorithms (if used at all) are looking at quantities, not costs and look at annual averages, not live MRP data.

This results in unnecessary costs, excessive inventory, stockouts, and a lack of sustainability.

BENEFITS

20% less inventory5% less deliveries75% less manual interventions

5% less inventory47% less deliveries20% lower spend in packaging through

quantity discounts

- 25 sites in Europe and the Americas.
- Official SAP partner.
- 10 millions in annual cost savings for every 100 millions of Inventory.

HIGH FINANCIAL IMPACT

Save automatically millions every year.

ZERO CHANGE MANAGEMENT

Optimize operational purchasing with our API, no user interaction required.

NOBODY DOES IT

Get it only with us. We are complementary to IBP, o9, Kinaxis, OMP etc.

We integrate with existing **Interfaces from** SAP ECC, S4 HANA or any other ERP

INPUT (CLIENT ERP)

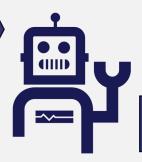
DEMAND SIGNAL

DepReq, IndReq, CusOrd, etc

FIXED / EXISTING PURCHASES FOR THAT MATERIAL

MATERIAL PARAMETERS (MOST ARE OPTIONAL)

Cost factors: Transport, working capital, quality control, quantity discounts, etc.


Safety: Coverage days, Safety stock & days, etc.

Any additional parameters: GR processing time, batches expiration dates, phase-in/phaseouts, etc.

GenLots Order Al

SaaS in the cloud

Standard APIs

Standard

APIs

OPTIONAL: OrderUI GENLOTS USER INTERFACE

OUTPUT (CLIENT ERP)

PURCHASE REQUESTS

... and/or Planned Order, PO Items, etc.

Graphs, cost awareness and simulations, future inventory in volume, reports

OPTIONAL: PolicyAdvisor

Assessing the impact of changes in inputs (like service levels, safety stock, rounding values, etc.) on the planning and on the costs

<u>Implementation</u>

GenLots: 3-10 days

Client: 3-10 days

Testing 1-2 months no commitment

Total testing phase

< 3 months

More about GenLots

GenLots replaces Lot Sizing with Total Cost + Al

Total cost optimization across 5 factors with proprietary **reinforcement learning** (AI):

- Acquisition cost of the material (with scale prices if any)
- Cost of getting the material in the warehouse at each order ("order cost")
- Carrying cost, i.e. cost of storage and cost of capital
- Scrap cost: material becomes obsolete
- Risk limitation: avoid stockout

- GenLots immediately answers the question: "how much does a particular ordering strategy cost the company?
- It is compatible with MRP or DD MRP, daily, weekly or monthly buckets
- No use of historical data is needed

MRP example

Parameters:

• Safety stock: 10

Lead time: 1 week

• Lot sizing: 80

In the classic MRP process, a lot sizing procedure (EOQ,L4L, PPB) and corresponding lot size is used to orientate the size, frequency, and timing of the orders.

SLS allows to set this procedure with more accuracy through simulation.

MRP table:

Period	1	2	3
Gross Requirements:		160	320
Scheduled Receipts:			
On Hand : 60	60 60	60 10	60 10
Net Requirements		110	320
Planned Order Receipts		110	320
Planned Order Releases	110	320	

GenLots example

Parameters:

Safety stock: 10

Lead time: 1 week

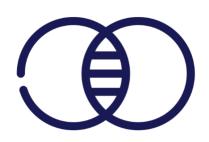
• Any other applicable parameter....

GenLots uses gross
requirements
(consumptions
forecasted for the
horizon), so still needs
traditional MRP to run
in that regard, but then
replaces all MRP
elements linked to
orders.

Lot sizing •

No pre-set constraints on lots' size, frequency or timing.

Period	1	2	3
Gross Requirements:		160	320



GenLots algorithm systematically minimizes Total Cost of Ownership by solving supply chain triangle

Optimized planned order		X	Υ
Planned Order Releases	X	Y	

USP: where does the performance of GenLots' algorithm come from?

- Larger universe of solutions than traditional approaches like EOQs
- Isolates the absolute optimum in seconds

- Flexibility to add parameters
- Enables to closely model real-world constraints

- Data updated live
- Continuous optimization instead of periodic lot sizing

- Native total cost approach
- Not configured for inventory only

Procurement simulator: projecting in real-time the financial impact of increasing supply resilience

← safety time +75%				_ Downlo	oad Share
Edited materials (1223) 👁	Created 2022-07-19 by Admin	Frequency: Weekly	Start date: 2022-07-19	Horizon: 65 weeks	Includes 1223 materials
	GenLots simulation ③		GenLots plan ⑦		SAP plan
Average Inventory Value	4 681 940 EUR	11,7 %	4133000 ^{EUR}	64 %	1 684370 ^{EUR}
Number of orders	1393	0,9 %	1380	134,8 %	3271
Costs					
Supply Chain cost	748 400 EUR	6,9 %	696950 EUR	23,3 %	922 840 EUR
Order Cost	308 580 EUR	1,1 %	305160 ^{EUR}	141,5 %	745310 ^{EUR}
Inventory cost	409 670 EUR	11,7 %	361 640 ^{EUR}	64 %	147380 EUR
Scrap cost	30150 EUR	0 %	30150 EUR	0 %	30150 EUR
Purchasing cost	13 674 460 EUR	1,2 %	13 507 350 ^{EUR}	29,3 %	17 685 530 EUR

Operational procurement simulator: testing and improving master data for additional savings

← MOQs at 50%					Download	d
Edited materials (20) 💿	Created 04.03.2022 by Admin	Frequency:	Weekly	Start date: 04.01.20	21 Horizon: 52 weeks	s Includes 26 materials
	GenLots simulation	?		GenLots plan	③	SAP plan
Average Inventory Value	3 3 2 9 9	30 CHF	6,9	3 560 000 0	22,3 %	4071 270 CHF
Number of orders		199	15,1	1 %	32,7 %	264
Costs						
Supply Chain cost	771 510 CHF		1 %	778 930 0	25,1 %	965150 CHF
Order Cost	2223	10 CHF	13,8	191 640 0	33,5 %	296 790 CHF
Inventory cost	549 050 CHF		6,9	% 5871400	21,7 %	668 200 CHF
Scrap cost	1	60 CHF		160 (CHF	160 CHF
Purchasing cost	171873	80 CHF	0 %	171803800	11,6 %	19 181 510 CHF