

Digitally Transforming Mining

Dr. Adriana Marais Empie Strydom From Earth to Space 28 August 2017

Your Speakers

Dr. Adriana MaraisHead of Innovation, SAP Africa
Astronaut Candidate, MARS One

What the Big 4 are telling CEOs

(Serving mining where it's going)

Industry 4.0

1800 Industry 1.0	1900 Industry 2.0	1970 Industry 3.0	2015+ Industry 4.0
Mechanization, Water power Steam power	Mass production Assembly lines Electricity	Computers and IT Automation	Cyber-Physical Systems
Physical Systems	Machine assisted Human	Human assisted Machine	Cyber-Physical Systems

Mining 4.0 in the context of Industry 4.0

	Artisanal Mining	Most Mining Companies Today	MineRP	MineRP
	Mining 1.0	Mining 2.0	Mining 3.0	Mining 4.0
Plan	Paper	CAD	Enterprise	Real Time & Cognitive
Execute	Shovel	People & Machines	Sensors & Human Interactions	Instrument or People
Action	People	Radio	Workflow	Digital Instruct
Time	Never really know	Once a Month	Sensor on demand Human past shift	Millisecond mining & Cognitive

IMPACT HAZARD

SCIENTIFIC KNOWLEDGE

OSIRIS-Rex launched 2016, sample return 2023

Bennu ~500m

Hayabusa2 launched 2014, sample return 2020

Ryugu ~900m

PROUD TRADITION IN SPACE

GAGARIN 1961

ARMSTRONG 1969

100 ASTRONAUT CANDIDATES

Research opportunity of a lifetime!

RESOURCE UTILISATION

	(1)	(2)	(3)
Metal	Abundance in me- tal of average LL- chondrite asteroid	Abundance in good" iron asteroid (90th percentile in Ir, Pt)	Abundance in "best" iron asteroid (98 th percentile in Ir, Pt)
Ferrous metals:			
Fe	63.7%	81-94%	82-94%
Co	1.57%	0.46-0.80%	0.43-0.75%
Ni	34.3%	5.6-18.0%	5.4-16.5%
Precious metals:			
Ge	1020 ppm	0.06-70 ppm	0.05-35 ppm
Re	1.1 ppm	1.1 ppm	2.4 ppm
Ru	22.2 ppm	20.7 ppm	45.9 ppm
Rh	4.2 ppm	3.9 ppm	8.6 ppm
Pd	17.5 ppm	2.6 ppm	1.2 ppm
Os	15.2 ppm	14.1 ppm	31.3 ppm
Ir	15.0 ppm	14.0 ppm	31.0 ppm
Pt	30.9 ppm	28.8 ppm	63.8 ppm
Au	4.4 ppm	0.16-0.70 ppm	0.06-0.6 ppm

Asteroid mining for crewed space exploration

INFERENCE

Estimation of size, composition & orbit

Fleets of solar-powered nanocraft probe asteroid belt

MEASUREMENT

SHEPHERD: A Concept for Asteroid Retrieval with a Gas-Filled Enclosure

PROOF

Resources extracted, spectral analysis provides real-time profit estimate

PROJECT OVERVIEW

* Keck 10 year mission 3 bill USD

Caltech

Asteroid Retrieval Feasibility Study (2012)

DID YOU KNOW?

Asteroids brought precious metals to early Earth's mantle

A lesson from History

Gold was
discovered at the
Witwatersrand in
South Africa by Mr
George Harrison
on the farm
Langlaagte in 1886

Source: Africa Museum, Johannesburg

A lesson from History

And yet...

A lesson from History

And yet...

1886

1910

£ 3000 £ 94 809 000 000,00

Value Accrual and Confidence

The Space Mining Value Chain

Valuation & Feasibility Criteria

- Position of the NEA on its orbit relative to earth or ACV
- Δv Energy requirement to enter / exit planetary orbits
- Exploration method and stage
- Estimated content (Type / Grade / Volume)
- Structure and composition of the NEA / planetesimal
- Feasible Extraction Plan and Capability
- Availability of Capital

As in mining, the problems are technical and financial

Metal Recovered over Life of Project

Initial Construction Capital Cost Estimate

Peak Funding

Total Capital Cost over Life of Project

Capital Efficiency

After-tax NPV at 5% Discount rate

After-Tax IRR

Life of Mine

Payback

Cash Operating Costs

Profit Margin

All In Sustaining Costs ("AISC")

All In Costs ("AIC") US\$542/oz

Terrestrial	Space*
7.243Moz	
US\$759m	
US\$723.8m	
US\$1,090.4m	
US\$3,312/oz	
US\$1,550.5m	
20.3%	
24 years	6-10 years
6.9 years	6-10 years
US\$343/oz	
57.97%	
US\$ 2839m	
US\$ 3925m	USD 2,6bn

The Art of the Possible

Millisecond Mining: Disruptively rethinking the way mine planning and execution should be working to enable real-time planning, execution and operational control

MineRP's Art of the Possible

26 Copyright MineRP © 2017

TRADITIONALLY

- Design Alternatives take weeks or months
- No Integration
 between technical
 plan and financial plan
- Planned using average costs & aggregate grades

WITH MINERP UBP

- Real-time, parametrically generated Design Alternatives
- Fully Integrated technical and financial scenario plans
- Planned using Actual / Contracted costs & live Geometallurgical Models

Unified Strategic Business Planning

Financial Plan / Budget Create budget alternatives per Mining Scenario, in minutes

The MineRP Unified Business Planning Solution

Fully Integrated Mining Technical Systems Multiple
Mine Planning Scenarios

Multiple Financial Planning Scenarios

Reduce Planning Cycle from Months to Minutes

Days

MineRP's Art of the Possible

30 Copyright MineRP © 2017

Real-time Execution Control and Management

OPERATIONAL PLANNING ASSETS FLEET HR PLANT FINANCIALS S Optimised Master Schedule Aligned Master & Discipline Schedules Works Orders

www.sap.com www.minerp.com